
88 C Programs

by JT Kalnay

This book is dedicated to Dennis Ritchie and to Steve Jobs.

To Dennis for giving us the tools to program.

To Steve for giving us a reason to program.

Published by jt Kalnay

Copyright 2012, JT Kalnay

This book is licensed for your personal use.

This book may not be re-sold.

However, this book may be freely given away to other people.

If you would like to share this book with another person, please feel free to do so.

Discover other titles by jt Kalnay at:

www.jtkalnay.com

http://www.jtkalnay.com/

About This Book

This book is not organized in a traditional chapter format.

Instead I have chosen to include example programs that exhaustively illustrate the

important points of C in an evolutionary manner. By working through these programs

you can teach yourself C. I assume you already know how to program and are familiar

with standard algorithms.

The programs that I present are not, by themselves, complete applications. The

programs are “single-issue teaching programs”. Experienced programmers who are

learning a new language have told me time and time again that they mainly want to see

the functionality of the new syntactic and semantic elements. The programmers tell

me that they will be able to think of the applicability of the feature to their project.

When necessary, I provide a sample application to give a feel for how the new element

might be employed.

The programs are presented in an order that presents the simplest, most straightforward

aspect of a new element first. Subsequent programs present the more subtle or

confusing aspects of a new element. This is a proven pedagogical approach for

teaching C that I have presented to over 1,000 professionals and college students.

This book assumes that you are already a programmer and are able to learn well on

your own.

Good luck in your study of C.

4

Table Of Contents

Simple.c simplest C program, main, program entry point

helloworld.c one printf

prog1.c more printf

prog2.c comments, case sensitivity

prog3.c variable declaration and initialization

prog4.c printf output

ops.c C operators

prog4a.c printf output

prog5.c C data types

pg34.c sizeof(var)

prog6.c operators and precedence

prog7.c mixed mode arithmetic

prog8.c modulus

steve.c relational operators

prog9a.c three types of loops

prog10.c for loop

prog11.c for loop, scanf

prog12.c nested for loops

prog13.c while loop

prog14.c while loop

5

prog15.c while loop, do loop

if.c if statements

16.c math.h

19.c logical operators and expressions

20.c complex decision structures

21.c switch statement

errors.c common syntax errors

22.c arrays

23.c array boundaries

25.c more array boundaries

26.c bowling scores, arrays

27.c character arrays

29.c function declaration and usage

30.c calling subroutines

31.c passing constants to subroutines

32.c passing variables to subroutines

33.c subroutine returning value

35.c multiple files compiled together

valref.c call by reference, call by value

36.c passing array to subroutines

37.c passing pointer to subroutine

38.c sorting array of integers

sortstep.c sorting example
6

39.c two dimensional array

twodim.c two dimensional array to subroutine

testarrays.c more arrays

testarrays1.c more arrays

prog40.c static, automatic, global

scope.c scope of variables

41.c recursion

testpop.c stack

42.c struct keyword, structures

43.c structures

45.c UNIX time.h file

46.c Arrays of Structures

47.c structures and arrays

48.c strlen string processing

49.c strcat

50.c strcmp

52.c getchar gets

53.c ctype.h, string functions

charlarge.c characters as large integers

55.c structures and strings

57.c pointers

58.c pointers

59.c pointers to structures
7

60.c linked list pointers

malloc, memory allocation

valref.c pointers and functions

76.c getchar, putchar

77.c file operations, fopen, fprintf, fclose, getc, putc

uitp.c file i/o and string processing

argtest.c arc, argv, dealing with command line arguments

envtest.c interface to UNIX environment

sol20.c argc, argv

78.c register const storage qualifiers

speed1.c inefficiency

speed2.c efficiency

64.c copying strings using pointers

73.c printf in depth

74.c scanf in depth

75.c scanf in depth

67.c bit operations

bits.c int octal hex binary display

71.c #ifdef conditional compile

quicksort.c quicksort pointer example

ptrtofunc.c pointers to functions

8

Simple.c Simplest C program possible

main ()

{

}

main is a C keyword.

It is the program entry point.

It does not need to be in column one.

main may take arguments. We will deal with them later.

The empty round brackets () indicate that we aren't going to worry about the argument

list at this point.

A C comment is enclosed by /* ……. */

main () /* program entry point */

{ /* start of block, start of scope */

Block body

Block blody

…

Block body

} /* end of block */

{ is the start of scope character

} is the end of scope character

{ and } are referred to as “curly brackets” in this text.

See also "simplest C program possible: Part II full ANSI! compatability" on

page 20.2

9

hello_world.c Simple program with printf output

All C statements end with a semicolon ;

main ()

{

/* printf is a c subroutine that you get access to through the standard io

library */

/* we will cover #include <stdio.h> later */

/* in its simplest form printf takes a character string to display */

/* it may also take other arguments, we will examine these

later */

/* printf returns a count of the number of characters it

displayed */

/* the count can be ignored */

printf("hello world \n");

}

10

prog1.c More on Printf

/* stdio.h is the standard input library that provides printf, scanf, and other i/o

routines */

/* #include tells the compiler where to look for input/output routines you call */

/* #include < name of .h file > will add that .h file to your compilation module */

#include <stdio.h>

int main ()

{

/* curly brackets mark the beginning and end of the scope of a compound

statement.

A compound statement may be a function body, the body of a loop, the body

of a conditional,

 several statements, … * /

printf("C Programming\n");

printf("C Programming\n");

}

printf("string to display"); /* string to display is inside quotations” */

/* can provide format specifiers that describe HOW to display things (e.g., as integers, as

strings) */

/* if you put in a format specifier you need to provide a variable to satisfy the format specifier

*/

printf("string format specifier", variables to satisfy format specifiers);

11

progl.c supplemental variable declaration, printf output, return value

/* to compile with ansi compiler with defaults

acc prog1.c will produce a.out

if (ompile is successful no "success indicator" is generated

if errors, compiler messages will be generated

executable can be run by typing a.out */

/* to compile with ansi compiler and specify executable's

name

acc -o progl prog1.c

will produce progl if (ompile is

successful */

/* to pass source code through a very picky pre compiler

alint progr1.c

*/

/* curly brackets mark the beginning and end of the scope of a compound statement.

A compound statement may be a function body, the body of

a loop, the body of a conditional, several statements */

/* c is an expression language

every statement returns a value,

which may be discarded or ignored if unneeded */

/* the next program shows that printf returns the number of characters it printed. */

12

C Programming

value of xyz is 14

C Programming

#include <stdio.h>

int main()

{

/* int declares xyz as a variable of type integer */

int xyz;

/* xyz gets return value from printf */

xyz = printf(“C Programming\n”);

/* %i format specifier says print out the value of xyz as an integer */

printf(“value of xyz is %i \n”,xyz);

/* we can ignore the return value of printf */

/* \n is the newline character */

printf(“C Programming\n”);

} /* program exit point */

13

Compile, link, run sequence

You can compile C modules to produce object files

You can assemble Assembler modules to produce object files

You can also compile other (e.g., Fortran, Pascal) programs to produce object files

You can then link all these together

ACC stands for ANSI C compiler

Acc name_of_c_file produces executable a.out

.c file c file

.o file object file

.asm file assembler file

.for file fortran file

.pas filepascal file

.cob file COBOL file

14

ANSI C Compiler

Link Editor

Executable

prog2.c comments case sensitivity
#include <stdio.h>

int

ma

in

()

{

/* comments start with slash asterisk

can span several lines, and end with asterisk slash */

int foobar; /* variable names are case sensitive */

/* all C statements except comments are case sensitive

int is OK, INT is not */

/* white space is ignored */

printf(“C Programming\n");

printf("For fun and profit\n"); /* comments can be at the end of a line */

printf ("Hello /* this is not a comment */ dolly \n");

print/*comment cannot be nested*/f("H1\n");

printf("abc\n"); /* comments that span lines

printf("det\n"); can cause unexpected results… */

/* the printf(“det \n”); statement would not be compiled b/c it is inside a

comment! */

Printf(“value of foobar is %i\n”,Foobar);

}

15

Compiler
Error

Compiler
Error

Storage Classes

Table I

Type How
Declared

Where
Stored

Initial Value Scope Lifetime

Auto Auto
keyword or
in function
or in block

Stack None Function or
block

Function or
block

Static
internal

Static
keyword in
function or
block

Heap Zero if not
explicitly
initialized

Function or
block

Entire life of
program

External Outside all
functions

Heap Zero if not
explicitly
initialized

Entire
program

Entire life of
program

Register Register
keyword

A register, if
one is
available

None Same as auto Same as auto

Static
external

Static
keyword
outside all
functions

Heap Zero if not
explicitly
initialized

Same file
after
definition

Entire life of
program

C supports different storage classes that you can force by using explicit keywords.

16

 prog3.c variable declaration and initialization
#include <stdio.h>

int main()

{

/* declare an integer */

int x;

/* do not count on uninitialized variables to have a certain value */

/* they could be zero and probably will be zero but, could be ??? */

printf("Unitialized x = %i\n",x);

x = 1 + 2;

printf("x with 1 + 2 = %i\n", x);

}

17

Different ways to declare and initialize variables

Type_of_variable name_of_variable

Int x;

Float y;

Char c;

type_of_ variable name1, name2, … ;

int x,y,z;

float f1 ,f2;

char c1, /* first char * /

c2; /* another char * /

type_of_ variable name_of_ variable = initial_value;

int a = 7;

float f1 = 6.7f;

type name = initial, name = initial, ... ;

int a = 6, b = 13, c = 12;

18

prog4.c printf output of variables
#include <stdio.h>

/* this program adds two integer values and */

/* displays the results */

/* it also demonstrates two ways to initialize a variable */

int main()

{

/* declare variables */

int v l; int v2; int vsum;

/* declare and initialize variable */

int all_in_one = 5;

/* initialize values */

v l = 1;

v2 = 2;

/* compute */

vsum = v l + v2;

/* print result */

printf("The sum of %i and %i is %i\n",vI,v2,vsum);

/* display all in one */

printf("all_in_one => %i \n",all_in_one);

/* case sensitivity error, would not compile */

/* printf("all_in_one => %i \n",ALL_in_one); */

/* printf error * /

print("all_in_one => %i \n",all_in_one);

}

19

OPERATORS: RETURN VALUE AND SIDE EFFECTS

In C, all operators have a return value and some have

"side effects"

A return value isa value given back. For example in the

code:

int a;

8= 3 + 4;

The addition operator (+) returns the result of adding the values 3 and 4.

A side effect is a change in a memory location.

For example:

int a;

a= 7;

The assignment operator (=) changes the memory location we call 'a' to contain the

value 7.

The assignment operator also has a return value, namely the new value of a (in our

case 7). In this way we can say:

int a,b,c;

a=b=c=7;

7 is assigned into c, c's new value (7) is assigned into b, etc.

NOTE: any statement that has no side effecvt and who's return value is not used adds

zero value

to a program.

3 + 4;

the 3 and 4 are added returning 7 which is discarded (like all intermediate results when

no longer

needed). Most compilers would flag a line like 3 + 4; with the warning:

"Statement has no effect"

20

mathematics operators

addition +

subtraction -

multiplication *

division /

assignment =

incrementing ++

decrementing --

ops.c program to demonstrate c operators
main ()

{

int i.x:

i = O;

x = i++; /* post increment, return vaule is OLD value, side effect is

increment*/

printf("i = %i x = %i \n",i ,x);

i =0;

x = ++i; /* pre increment, return vaule is NEW value, side effect is

increment*/

printf("i = %i x = %i \n", i, x);

i = 0;

x = i--; /* post decrement, return vaule is OLD value, side effect is

decrement*/

printf("i = %i x = %i \n", i, x);

i = 0;

x = --i; /* pre decrement, return vaule is NEW value, side effect is

decrement */

printf("i = %i x = %i \n", i, x);

/* compound assignments: var op= value is the same as var = val op

value */
21

i = 5;

i += 2; /* plus equals, add and assign, same as i = i + 2 */

printf("i = %i \n",i);

i = 5;

i -= 3; /* minus equals same as i = i - 3*/

printf("i = %i \n",i);

i = 5;

i *= 4; /* times equals same as i = i * 4 */

printf("i = %i \n",i);

i = 20;

i /= 2; /* divides equals same as i = i /2 */

printf("i = %i \n",i);

i = 25;

i %= 7; /* mod equals same as i =

i % 7*/

printf("i = %i \n",i);

}

 Sample Output From ops.c

i= 1 x = O

i=1 x = 1

i= -1 x= O

i= -1 x= -1

i = 7

i = 2

i = 20

i = 10

i = 4

22

Exercise 1

/* make a file named xone.c */

/* write a C program to compute the following */

/* the result of b squared - 4 times a times c */

/* where a is 5, b is 4, c is 3 */

/* print out the answer * /

/* use variables named a, band c and a variable to hold the result */

/* C does not have a built in square function

nor does it have a "to the power of” operator*/

23

Solution for Exercise 1

#include <stdio.h>

int main ()

{

int a, b, c, result;

a = 5;

b = 4;

c = 3;

result = (b * b) – (4 * a * c);

/* using the () removes doubts about the order of operations... */

printf("%i squared - (4 * %i * %i) => %i \n", b,a,c,result);

}

24

Exercise 2

/* fix this program by typing it in from scratch

find the syntax errors and fix them as you go (let the compiler find the errors)

until it compiles cleanly and runs cleanly and produces the answer 12 */

#include stdio.h

main

integer i;

do some math * /

i=1+2+3

/* do some more

math

i = i + i;

print(i = %m \n,

i);

}

/* desired

output */

/*

i = 6 inaccurate

documentation !!

*/

25

 #include <stdio.h>

main()

{

int i;

/* do some math * /

i = 1 + 2 + 3;

/* do some more math * /

i = i + i;

printf("i = %i \n", i);

}

/* desired output * /

/*

i = 12

*/

26

Precompiler:
The precompiler (sometimes called Preprocessor) is the first step in the compilation

process. Its purpose is to:

1) remove comments before 'real' compilation

2) perform precompiler statements (a-k-a Preprocessor directives)

Precompiler statements start with a # as the first non white space character on the line.

We have already seen one:

#include <stdio.h>

This statement asks the precompiler to embed the file stdio.h into our C file at the

place where the directive appears.

There are several more that we will examine:

define perform text subtitution

#if <stmt> conditional include of code

#ifdef <stmt> perform text substitution

#ifndef <stmt> if not defined, include the following code

#else else for any #if

#elseif <stmt> else if for any #if

#endif end of #if block

27

prog4a.c #ifdef precompiler

main ()

{

#ifdef AAA

printf("hello from aaa\n");

#endif

#ifdef BBB

printf("hello from bbb\n");

#else

printf("What you don't like bbb?\n");

#endif

#ifndef CCC

printf("defineCCC to stop me before I print again!! \n");

#endif

}

If you compile like this: acc prog4a.c

and run a.out, you see:

What you don't like bbb?

define CCC to stop me before I print again!!!

If you compile like this: acc -DAAA prog4a.c

and run a.out, you see:

hello from aaa

What you don't like bbb?

define CCC to stop me before I print again!!!

If you compile like this: acc -DAAA -DBBB prog4a.c

and run a.out, you will see

hello from aaa

hello from bbb

define CCC to stop me before I print again!!!

If you compile like this: acc -DCCC prog4a.c

28

and run a.out, you will see

What you don't like bbb?

29

prog5.c C basic data types

/* acc prog5.c -DCASE1 -o prog5 */

/* acc prog5.c -DCASE2 -o prog5 */

main ()

{ /* all scalar-variables may be initialized when defined */

/* program to show declaring variables */

/* and initializing variables */

#ifdef CASE 1

char c = 'a';
double d = 1.23e+45

; float f = 123.45;
int i = 321;

#endif

/* EXERCISE, change these to valid values */

#ifdef CASE2

double d = 'd';

float f = 2;

int i = 1.23;

char c = d;

#endif

/* display character as character */

printf("c = %c \n",c);

/* display character as integer */

printf("c = %d \n\n",c);

/* display double in scientific */

printf("d = %e \n",d);

/* display double in float or scientific */

/* lets computer decide */

printf("d = %g \n\n",d);

/* display float as floating point */

printf("f = %f\n\n",f);

/* display integer as base ten integer */

printf("i = %i \n",i);

/* display integer as base 16 integer */
30

printf("i = %x \n\n",i);

}

31

Fundamental Data Types
To Store A Character
In C a char is just a subtype (skinny) integer. What we normally think of as a
character (displayable) is simply the output to the screen from some display function.
Something like 'A' is an integer in C whose value is 65 (ASCII code for A). A
statement like: printf("%c", 'A');
asks C to display the character whose code is 65.

To Store Integers
char (usualy 1
byte, 8 bits)
short int (at
least 2 bytes)
int (usualy the same size as a
machine word)
long int (usualy at least 4 bytes
perhaps bigger)

To Store Floating Point
Numbers
float (at least 4 bytes, 7
significant digits)
double (at least 8 bytes, 15 significant digits, may
be larger)
long double (at least 8 bytes, some compilers
support 16 bytes)

To Store Unsigned Integers, Logical Values and Bit
Arrays
unsigned char
unsigned short int
unsigned int
unsigned long int

To Store Explicitly Signed Ints
signed char
signed short int
signed int
signed long int
If the keyword int is removed, say from signed int, the default data type is int so the
statements

signed int and signed are syntactally equivalent

built in operator sizeof(x)
sizeof(type) returns # of bytes in that type
sizeof(variable) returns number of bytes in
that variable

32

Relationships Between Sizes of Variables
1 = sizeof(char) <= sizeof(short) <= sizeof(int) <=
sizeof(long)
sizeof(float) <= sizeof(double) <= sizeof(long
double)
sizeof(char,short,int,long) = sizeof(rsigned) char,short,int,long) = sizeof(Iunsigned)
c,s,i,l)

33

NOTE: The following items were intentionally left to the discretion of the

compiler writer:

1) whether the default is signed or unsigned if the programmer does not specify it for

(har, short, int or long

2) the exact number of bytes in any data type although minimum ranges have been

specified

pg34.c, illustrates sizeof(var)

NOTE: sizes of different types may vary from system

to system

main ()

{

char cl; int il; short sl; unsigned ul;

long int 11;

printf("Size of character is %d

\n",sizeof(cl));

printf("Size of short int is %d

\n",sizeof(sl));

printf("Size of unsigned int is %d

\n",sizeof(ul));

printf("Size of int is %d \n",sizeof(il));

printf("Size of long int is %d

\n",sizeof(ll));

}

/*

sample

output

*/

/*

Size of

character is

1

Size of short

34

int is 2

Size of

unsigned int

is 4

Size of int is 4

Size of

long int is

4

*/

/* exercise:

modify this program to find out how many bytes a float and a double

consume

*

/

35

PORTABILITY CONCERNS
This is not a bad time to say a few introductory words on the issue of portability.

One of the strongest arguments for making the change to the C language is that of

portability. If a program is coded to the ANSI standard, it should be -100% portable if

the target platform has

 an ANSI compliant C compiler available. However, there have been many groups

that have learned the hard way that they need to understand, the ANSI standard in

order for their programs to work correctly cross-platform.

It is extremely important to note the following in light of our discussion of

data types:

a short integer will be at least 2 bytes, but may or may not be 4

an int will typically be the same size as a machine word, but will be at least 2

bytes

a long int will be at least 4 bytes, but could be longer

Any program that needs to be portable (and still function correctly) should be careful

to use these data types correctly. Back in '93 a client/server software group learned

this the hard way. Their program, which ran fine on an IBM mainframe, hung their

PC (DOS machines) even though it had compiled without error or warning. Their

program was riddled with counters of type int (keeping track of the number of

records read etc.), which would keep track of counts sometimes reaching 1 million or

more. Their mainframe compiler had 4 byte ints, their PC compiler had 2 byte ints.

(RANGE: 2 bytes = 0 to 65535 4 bytes = 0 to 4,294,967,764)

Suggestion: analyze your data first and ...

-if you mean to store 2 byte quantities use a short

-if you mean to store 4 byte quantities use a long

-if you need a data value the size of a machine word (and adjusts cross-

platform)

use an int (handy when writing operating system code or

interrupt handlers)

-analysis of the data will also help you decide whether you need

specify signed or
36

unsigned, if there is a need to specify it please do so.

One last word for now ...

Many C compilers come with extra libraries supporting sound, fancy graphics, low-

level hard-

ware I/O, etc. Please note that these 'add-in' libraries are generally not ANSI standard

and are not supplied with many compilers. (does mouse control mean anything on a

3278 attached to a MVS system) It does you little good to have a program that does

fancy screen I/O if it cannot be ported to another platform (unless, of course, it is

strictly intended for only one platform)

Simplest C program possible: Part II

full ANSII compatability with no compiler warnings or errors

void main (void): /* prototype for main, usually not required, but

guaranteed

to work with all ANSI compilers */

void main()

{

}

OR

/* ANSI header stating return type * /

int main(void); /* prototype for main, usually not required, but guaranteed

to work with all ANSI compilers */

int main ()

{

return 0;

}

37

prog6.c mathematics operators, precedence

main ()

{

/* declare four integers and space for answers */
int a = 1; int b = 2; int c = 3; int d = 4; int ans;
/* precedence of - + *
 () parentheses
- unary minus + unary plus
++ increment -- decrement
* multiplication
/ division
% modulo
+ addition - subtraction
== equality = equals */

/* print initial values */
printf("a => %i \t b => %i \t c => %i \t d => %i \n\n",a,b,c,d);

/* subtraction example */
ans = a - b;
printf("a - b = %i \n",ans);

/* precedence problem, want addition then multiplication */
ans = a + b * c;
printf("a + b * c = %i \n",ans);

/* precedence example */
ans = (a + b) * c;
printf("(a + b) * c = %i \n",ans);

}

/* sample output */

a => 1 b=> 2 c=>3 d=>4

a – b = -1

a + b * c = 7

(a + b) * c = 9

38

prog7.c mixed mode arithmetic

/* program demonstrates mathematics, precedence and the difference between integer

division */

/* how value is stored is determined by destination data type */

/* and floating division *}

main ()

{

/* declare and initialize

integers */ int a = 7; int b

= 2; int int_ans;

 /* declare and initialize floats */

float c = 7.0; float d = 2.0; float float ans;

/* print initial values */

printf("a => %i \t b => %i \t c => %f\t d =>

%f\n\n",a,b,c,d);

printf("integer divided by

integer \n");

intans = a / b;

printf("%i / %i = %i \n\n",a,b,int_ans);

printf("float divided by

float \n");

float ans = c / d;

printf("%f / %f = %f\n\n",c,d,float_ans);

intans

= c / b;

floatan

s = c /

b;

printf(“float divided by integer \n");

printf(" stored in integer %f / %i = %i

\n",c,b,int_ans);

printf(" stored in float %f / %i =

%f\n\n",c,b,float_ans);

39

printf("integer divided by a

float \n");

int_ans = a / d;

float_ans = a / d;

printf(" stored in integer %i / %f = %i

\n",a,d,ineans);

printf(" stored in float %i / %f =

%f\n\n",a,d,floaeans);

printf(("-a = %i \n",-a);

printf("-c = %f\n",-c);

}

40

sample output

a => 7 b => 2 C => 7.000000 d => 2.000000

integer divided by integer

7/2 = 3 .;

float divided by float

7.000000 / 2.000000 = 3.500000

float divided by integer

stored in integer 7.000000 / 2 = 3

stored in float 7.000000 /2 = 3.500000

integer divided by a float

stored in integer 7 /2.000000 = 3

stored in float 7 /2.000000 = 3.500000

-a =-7

-c = -7.000000

41

prog8.c the modulus (remainder, residue) operator

/* the modulus operator only works on whole numbers*/

main ()

{

int guzinta;

int rem;

guzinta = 25 /5;

rem = 25 % 5;

printf("5 goes into 25 %i times with remainder %i \n",guzinta, rem);

guzinta = 25 / 7;

rem = 25 % 7;

printf("7 goes into 25 %i times with remainder %i \n",guzinta.rem);

}

output you'll see

5 goes into 25 5 times with remainder 0

7 goes into 25 3 times with remainder 4

42

Exercise 3

/* Part 1 */

/* write a program that evaluates the following expression */

/* display the result in integer format */

/*

ans = 7 times 9 plus 19 divided by 5 modulo 2

do the multiplication first

the division second

the modulo third

and the addition last

*/

/* Part 2 */

/* write a program that evaluates the following expression */

/* use exponential formats for the numbers */

/* display the result in exponential format */

/* (.000000097 + 2010) / (89000 * 23) */

43

 Solution for Exercise 3

main ()

{

int ans;

float a,b,c,d;

float numerator;

float denominator;

float result;

a = 9.7e-8;

b = 2.01e3;

c = 8.9e4;

d = 23.0;

ans = (7 * 9) + ((19/5) % 2);

printf("ans = %i \n",ans);

numerator = a + b;

denominator = c * d;

printf("numerator = %e \n",numerator);

printf("denominator = %e \n",denominator);

result = numerator / denominator;

printf("Result = %e \n",result);

 }

44

Relational (Comparison)

Operators
< less than

> greater than

= equivalent to

<= less than or equivalent to

>= greater than or equivalent to

!= not equivalent to

Relational operators are used in relational expressions. A relational expression is

defined as anything that can produce a True or False answer. Falsity is defined as zero.

Truth is defined as non-zero. A variable by itself can be a relational expression

because its value will be examined to see if it is zero or non zero. A relational

expression can exist by itself, it does not have to be examined within the context of a

decision.

The relational operators return a 1 if true,

0 if false.

45

/* steve.c August 10, 1993 */
main ()

{

int x, y, z;

y = 2;

/* y = 3 is a relational expression * /

/* its truth or falsity is assigned to x */

x = y == 3; /* assign to x the result of the comparison */

printf("AAA x = %i y = %i\n",x,y);

y = 3;

/* y == 3 is a relational expression * /

/* its truth or falsity is assigned to x */

x = y == 3;

printf("BBB x = %i Y = %i\n",x,y);

x == y; /* no side effect, return value not used, this does nothing */

printf("CCC x = %i y = %i\n",x,y);

x < y;

printf("DDD x = %i y = %i\n",x,y);

z = x < y;

printf("EEE z = %i x = %i Y = %i\n",z,x,y);

/* sample output */

AAA x= O y = 2

BBB x = 1 y = 3

CCC x = 1 y = 3

DDD x = 1 y = 3

EEE z = 1 x = 1 Y = 3

Run this program through alint and see that it tells you that there are several bugs.

46

prog9a.c three types of loops

main ()
{

int sum;
int n;
/* sum and loop counter need to be initialized */
sum = 0; n = -5;

/* while (relational expression) */
/* while loop, check condition at top */
while (n <= 5)
{

sum = sum + n;
n = n + 1;
printf("n is %i sum is %i \n",n,sum);

}
printf("WHILE LOOP:sum is %i \n\n\n",sum);

/* do loop, check condition at bottom */
sum = 0; n = -5;
do
{

sum = sum + n;
n = n + 1;
printf("n is %i sum is %i \n",n,sum);

} while (n, <= 5);
printf("DO LOOP:sum is %i \n\n\n",sum);

/* for loop, C shorthand to get all loop things on one line */
for (sum = 0, n = -5; n <= 5; n++)
{

sum = sum + n;
}
/* print out the results */
printf("FOR LOOP:sum is %i \n\n",sum);

}

47

progl0.c for loop

/* program to calculate squares

* /

ma

in

()

{

int square;

int n;

printf("TABLE OF SQUARES NUMBERS \n\n");

printf(''\t n \t n squared\n");

printf(''\t---\t----------\n'');

for (n = 1; n <= 20;

n++)

{

square = n * n;

printf(''\t %i \t %i

\n",n,square);

} \t is the tab character

}

48

TABLE OF SQUARES NUMBERS

n n squared

--- ------------

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

11 121

12 144

13 169

14 196

15 225

16 256

17 289

18 324

19 361

20 400

49

Comparison of Loop Syntax

For a = 1 to 37 by 2

For (n = 1; n <= 20; n++)

n is initialized to 1 // n = 1

perform test, // if n <= 20

if true, do body

if false, skip body

after body performed, do increment

//n++

50

Starting

Condition

Condition To

Continue

increment done after
body,

before testing condition

Exercise: Rewrite the previous example (progl0.c) and replace the for loop
with

 a while loop, and then a do-while loop.

Exercise: Make the previous program do the table of squares from 10 to

50

by 2's. i.e, 10 12 14 16 ...

Exercise: Make the previous program do the table of squares from 33 to

-7

by -3's i.e. 33, 30,27,24 ...

51

prog11.c for loop scanf input

/* program to calculate squares * /

/* introduces scanf for

user input */

main ()

{

int square;

int cube;

int n;

int user number;

printf("How far do you want to go to? \n");

scanf("%i",&user_number);

printf(''\nYou entered %i \n\n",user_number);

printf("TABLE OF SQUARES & CUBES\n\n");

printf("\t n \t n squared \t n cubed\n");

printf(''\t---\t-----------\t ---------\n");

for (n = 1; n <= user_number; n++)

{

square = n * n;

cube = square * n;

printf(''\t %i \t %i \t\t %i\n",n,square,cube);

}

}

/* EXERCISE: remove the & from &user_number, you will experience a core

dump. This is because scanf requires the & on the variable to read the data into. It

needs to be passed the address of where to write to */

/* UNIX PROGRAMMER'S HINT: when you have a program with a

scanf in it,

do a grep on the file with the scanf as the string to search for.

Double check that every scanf has an & associated with it. If

you know C shell programming, make a shell script to do the

grep and print only the lines that have scanfs and not & */

If the & is left off, and if you use the highest warning level, the compiler should

52

warn you that

you are trying to use the value of the variable user_number before it has been set.

TRY TO GET INTO THE HABIT OF READING ALL WARNINGS FROM THE

COMPILER! IT IS CONSIDERED GOOD PRACTICE THAT YOUR PROGRAM

WHEN 'DONE' SHOULD CAUSE NO WARNINGS.

53

EXERCISE: see how large a number you can input and still get the square and cube

of. Try to make the integer result go out of range

SCANF "Feature" or "Bug"

scanf always leaves a carriage return in the input stream. If you are mixing

line input via scanf and character input via getchar, you will have to eat the

carriage return left behind by the scanf or you will have to flush the input

stream

89 cr 23 cr 'p' cr

Using scanf for Input

scanf(" format_specifier" , address of variable to satisfy format_specifier);

54

prog12.c nested for loops

''Ukranian doll for loops" ''Matreshka''

/* program to calculate squares * /

/* introduces nested for loop */

main ()

{

int square, n, user_number, counter, i;

/* this loop will be done four times */

/* counter will take on the values, 1 234 */

for (counter = 1; counter < 5; counter++)

{

printf("How far do you want to go to? \n");

scanf("%i",&user_number);

printf(''\tYou entered %i \n\n",user_number); /* \f form feed */

printf("TABLE OF SQUARES \n\n");

printf(''\t n \t n squared\n");

printf(''\t---\t----------\n'');

/* this loop will be done user_number times */

/* n will take on values 1 through user_number */

for (n = 1; n <= user_number; n++)

{

square = n * n;

printf(''\t %i \t %i \n",n,square);

} /* end of n loop */

} /* end of counter loop * /

printf(''\n\n'');

/*COMMON PROGRAMMING MISTAKES */

for (i = 0; i < 5; i++)

{

printf("outer i = %i \n",i);

55

/* using same loop counter in a nested loop */

for (i = 6; i < 9; i++)

{

printf("inner i = %i \n",i);

}

printf(“\n\n”);

for (i = 0; i < 5; i++)

{

printf("outer i = %i \n",i);

/* changing value of loop variable */

i += 7;

}

} /* end main */

56

Assume i and j are ints
What Would be Printed?

for (i = 0; i < 5; i ++)

{ for (j = 5; j > 3; j--)

{

printf("%i %i\n" .i.j);

}

}

Assume x and m are ints
x = 5;

while (x < 10) {

m = x * 10;

do {

printf("%i %i \n" .x.m);

m=m+ (m/2);

} while (m < 200);

x = x + 2;

 }

57

prog13.c while loop

/* while loop * /

/* introduces \a, ansi alert character* /

main ()

{

int i;

int sum = 0;

i = -5;

while (i <= 5)

{

printf(“\a i = %i \n",i);

sum += i;

i++;

}

printf("Sum from -5 to 5 is %i \n",sum);

/* COMMON PROGRAMMING MISTAKE */

/* Infinite LOOP */

i = 1;

EVERY C statement returns a value that may be used or ignored

THE RETURN value of an assignment statement is the value assigned

while (i = 1)

{

printf(" i = %i \n",i);

i++;

printf(" i = %i \n",i);

}

/* UNIX PROGRAMMER HINT */

/* BEFORE COMPILING, AND ESPECIALLY BEFORE RUNNING */

/*

grep your file for all lines that have if, while, for in them

double check that you have = where = is needed, and not =

many programmers replace == with some other defined value

58

see #define statement later

*/

/* add this line to top of program

#define MYEQ ==

then change the = in the while (i = 1) to while (i MYEQ 1) */

59

prog14.c while loop for secret number guessing

/* while loops */

/* program to ask for guesses until they get it right */

main ()

{

int guess = -1;

int secret = 7;

int count of'guesses = 0;

printf("Try to pick a number from 1 to 10 \n");

/* possible infinite loop if user is real idiot */

while (guess != secret)

{

count of'guesses++:

printf("Enter a guess \n");

scanf ("%i",&guess);

printf(''\n You entered %i \n" ,guess);

} /* end while */

printf(“You got it after %i tries \n",count_of_guesses);

}

60

prog15.c while loop vs. do loop

/* program to let user guess secret number */

/* shows difference between while loop and do

loop */

main ()

{

int guess;

int secret = 7;

int count_of_guesses = 1;

printf("Try to pick a number from 1 to 10 \n");

/* possible infinite loop if user is real idiot */

/* need to preinitialize value for while loop */

printf("Enter guess #%i\n",count_oCguesses);

scanf ("%i",&guess);

printf(''\n You entered %i \n" ,guess);

while (guess ! = secret)

{

printf("WRONG\n");

CONTROL will return from the system statement when the entire

command has been completed. IF THE command was placed in the

background

control will return as soon as the placement has occurred

system ("usr/demo/SOUND/play

lusr/demo/SOUND/sounds/laugh.au");

count_ of_guesses++:

printf("Enter guess #

%i\n",count_of_guesses);

scanf ("%i",&guess);

printf(''\nYou entered %i \n",guess);

} /* end while */

printf("You got it after %i tries \n",count_oCguesses);

61

printf("Try to pick a number from 1 to 10 \n");

count_of_guesses = 0;

secret = 3;

/* do not need to preinitialize value for do loop */

do

{

count_of_guesses++;

printf("Enter guess #

%i\n",count_of_guesses);

scanf ("%i",&guess);

printf(“\n You entered %i \n"

,guess);

if (guess

!=

secret)

{

printf("WRONG\n");

system (“/usr/demo/SOUND/play

/usr/demo/SOUND/sounds/laugh.au");

} while (guess != secret);

printf("You got it after %i tries

\n",count_of_guesses);

}

62

Exercise 4

/* write a program to compute and print the first

ten * /

/* factorial numbers */

/* desired output is a table */

/* 1! 1 */

/*2! 2 */

/*3! 6 */

/* ... */

/* 10! 3628800 * /

If your program is more than 15 lines(of code, not counting comments) it is going the

wrong

direction.

HINT: mathematical identity N! = (N-I)! * N

63

Solution for Exercise 4

main ()

{

int i, factorial;

factorial = 1;

for (i = 1; i <= 10; i++)

{

factorial = factorial * i;

printf(“%i!/t%i\n”,i, factorial);

}

}

64

Exercise 5

/* write a c program to input an integer as an integer* /

/* print out the number, one digit per line */

/* i.e. input 1234 */

/* output 4 */

/* 3 */

/* 2 */

/* 1 */

Solution for Exercise 5

main()

{

int i;

int outnum;

printf("Input number please \n");

scanf("%i" ,&i);

while (i > 0)

{

outnum = i % 10;

printf("%i\n" ,outnum);

i = i / 10;

}

}

65

C if if else
if .c

main ()

{

int i;

printf("enter a number \n");

scanf("%i",&i);

if (i < 100)

{

printf("%i is less than one hundred \n",i);

}

printf("After the first if statement\n");

if (i < l0)

{

printf("%i is less than ten \n",i);

}

else

{

printf("%i is greater than or equal to ten\n",i);

}

}

if (relationalexpression)

{

execute if re TRUE

•••

}

else /* must follow immediately */

{

execute if re FALSE

}

66

prog16.c math.h include file

/* if statement */

/* math.h contains mathematical functions like sqrtO */

#include <math.h>

main ()

{

float number;

float square_root;

printf(''\n\nType in a number \n");

scanf("%f”,&number);

printf(''\nYou entered %f\n",number);

if (number < 0)

{

printf("Can't get square root of negative number \n");

}

else

{

square_root = sqrt(number);

printf("The square root of %f is %f\n",number,square_root);

}

printf'(“Program completed \n");

}

/* EXERCISE remove the #include <math.h> line and see what you get */

/* some (but not all) of the math functions available

for a complete list, consult your compiler's documentation

ceil(x) floor(x)

sin(x) cos(x) tan(x) asin(x) acos(x) atan(x)

sinh(x) cosh(x) tanh(x)

exp(x) log (x) loglO(x) pow(x,y)

*/

67

prog19.c logical operators and relational expressions

/* precedence of logical operators and

brackets * /

/*

< less than

<= less than or equal to

> greater than

>= greater than or equal to

== equality

!+ inequality

&& logical and

|| logical or

main ()

{

int score;

printf("Enter the score\n");

scanf("%i",&score);

printf("You entered %i\n",score);

if (score < 0 || score> 100)

printf(“Impossible score\n”);

else

{

if (score >= 0 && score < 50)

printf("F\n");

else

{

if (score >= 50 && score < 70)

printf(“D\n”);

else

{

if (score >= 70 && score < 80)

68

printf(“C\n”);

else if (score >= 80 && score < 90)

printf(“B\n”);

else if (score >= 90 && score <= 100)

printf(”A\n”);

else

printf(“no way to get here \n”);

}

}

}

}

69

if (relational expression)

relational expression evaluates to TRUE or FALSE

if ((r e l) || (r e 2))

|| is the logical or operator

re1 re2 result

t t t

t f t

f t t

f f f

70

 if (relational expression)

relational expression evaluates to TRUE or FALSE

if ((re1) && (re2))

&& is the logical and operator

rel re2 result

t t t

t f f

f t f

f f f

71

prog20.c complex decision structures

#define IBM 1

#define MER 2

#define MMD 3

#define QUIT 4

main ()

{

int stock symbol;

char p_or_c;

char cr;

printf(''\nEnter stock symboI\n");

printf(" 1 IBM\n"); printf("2 MER \n”);

printf("3 MMD\n"); printf("4 QUIT \n”);

scanf("%i",&stock_symbol);

scanf("%c",&cr);

printf("You entered %i\n",stock_symbol);

if (stock symbol == IBM)

printf("%.2f\n",53.25);

else if (stock_symbol == MER)

printf("%.2f\n",71.75);

else if (stock_symbol == QUIT)

printf("YOU SELECTED QUIT\n");

else if (stocksymbol == MMD)

{

printf("(P)referred or (C)ommon?\n");

scanf("%c",&p_or_c);

scanf("%c",&cr);

if (p_or_c == 'P')

{

printf("Preffered 22.5\11");

}

72

else if (p_or_c == 'c')

{

printf(“Common 21.25\11");

else

printf("Unknown character \n");

}

else

printf("Unknown symboI\n");

}

73

switch (discreet valued variable)

{

case discreet value:

•••

•••

break;

case discreet value:

•••

•••

break;

•••

•••

default:

•••

•••

break;

}

74

prog21.c switch statement

#include <string.h>

#include <ctype.h>

#define IBM 1

#define MER 2

#define MMD 3

#define QUIT 4

int stock_symbol;

char p_or_c;

char cr;

printf(“\nEnter stock symbol\n");

printf(" 1 IBM\n");

printf("2 MER\n");

printf("3 MMD\n");

printf("4 QUTI\n");

scanf("%i",&stock_symbol);

scanf("%c",&cr);

printf(“You entered %i\n",stock_symbol);

switch (stock_symbol)

{

case IBM:

printf("%.2f\n",53.25);

break;

case MER:

printf("%.2f\n" ,71.75);

break;

case QUIT:

printf("YOU SELECTED QUI1\n");

break;

 caseMMD:

75

printf("(P)referred or (C)ommon?\n");

scanf("%c",&p_occ);

scanf("%c",&cr);

if (toupper(p_or_c) == 'P') /* this is an atrocious line of code

*/

/* can you figure out why? */

{

printf("Preffered 22.5\11");

}

else if (toupper(p_or_c) == 'C') /* ATROCIOUS */

{

printf("Common 21.25\n");

}

else

printf(“Unknown character\n”);

break;

default:

printf("Unknown symboI\n");

} /* end switch */

/* Exercise, remove the break in case IBM, what happens? Why? */

THESE TWO LINES ARE ATROCIOUS, yet common.

Why?

(toupper is a macro that converts a character to its upper case equivalent)

76

Exercise 6

 /* write a program to have a person guess a secret number.

Let the range of valid numbers be zero to 100.

Let them have a maximum of 7 tries.

Tell them if they were too high or too low.

Report the remaining range of possiblities for them */

77

Solution for Exercise 6
main ()

{

int secret;

int guess;

int

num_gu

esses = 0;

int hi =

100;

int lo =0;

int seed;

printf("What time is it hh:mm:ss\n");

scanf("%i:%i:%i",&seed,&seed,&seed);

srand(seed); /* random number function */

secret = (int) rand() / 330;

if (secret < 0)

secret = 0;

if (secret> 100)

secret = 100;

/* make sure that guess is incorrect to begin

with */

guess = secret - 1;

while ((secret != guess) && (num

guesses < 7))

{

num_guesses++;

prfntf("Enter a guess between %i and %i\n",hi,lo);

scanf("%i", &guess);

printf(''\nYou entered %i\n",guess);

78

if

(guess

<

secret)

{

system ("/usr/demo/SOUND/play

/usr/demo/SOUND/sounds/laugh.au");

printf("TOO LOW\n");

if (guess > lo)

lo = guess;

else if (guess > secret)

{

system ("/usr/demo/SOUND/play /usr/demo/SOUND/sounds/

laugh.au");

printf("TOO HIGH\n");

if (guess < hi)

hi = guess;

}

}

}

}

79

Exercise 7

/* FOR THE MATHEMATICALLY INCLINED */

/* write a program to solve for the real roots of * /

 /* the quadratic equation ax^2 + bx + c */

/* input a , b , c * /

 /* check for real or imaginary roots * /

/* make sure not to divide by zero */

/* test data 1 2 1 => single real root x1 = -1 */

/* 1 -1 -6 => two real roots x1 = -2, x2 = 3 */

/* 0 0 0 => one real root x1 = 0 */

/* 0 4 -2 => one real root x1 = .5 */

xl = -1

xl = -2, x2 = 3

xl =0

xl =.5

80

Solution for Exercise 7

#include <math.h>

main ()

{

float a, b, c;

float discriminant;

float xl, x2;

printf("\n\ninput a b and c separated by spaces \n");

scanf("%f %f %f',&a,&b,&c);

printf("you entered %f %f %f\n\n\n",a,b,c);

discriminant = (b * b) - (4 * a * c);

if (discriminant> 0)

{

if (a == 0)

{

if (b == 0)

{

printf("x = 0 \n");

else

{

xl = (-c)/b;

printf("Single real root is %f\n",xl);

}

}

else

{

xl = (-b + sqrt(b*b - 4*a*c)) / (2 * a);

x2 = (-b - sqrt(b*b - 4*a*)) / (2 * a);

printf("Two real roots are \n");

printf("%f %f\n",xl,x2);

 }

81

else if (discriminant ==

0)

{

printf("one real root \

n");

if (a == 0)

{

xl = 0;

printf("xl =

%f\n",xl);

}

else

{

xl = -b / (2*a);

printf("xl =

%f\n",xl);

}else

{

printf(“Imaginary Roots\n”);

}

printf(“\n\n”);

}/* end program */

82

Exercise 8

/* exercise for those who don't want to do quadratic equations */

/* write a C program that:

inputs an integer number from the keyboard

displays it forwards

displays it backwards */

/* big, brain buster

as you reverse the number, print out each digit on a

seperate line, with the english language word beside the digit */

/* humungous brain destroyer

print out the english word for the number as a whole

i.e. 653 => six hundred fifty three

*/

83

Solution for Exercise 8

/* write a c program to input an integer

*/

/* print out the number, one digit per

line */

/* i.e. input 1234 */

/* output 4

 3

 2

 1 */ .

/* then print it out in reverse order */

/* then print the english word beside each digit */

char * words[] = { "Zero", "Un", "Deux", "Trois", "Quatre", "Cinq", "Six",

"Sept", "Huit", "Neuf”};

/*

solution

*/

main ()

{

int

i,safe,outnu

m;

int revnum

= 0;

printf("Input number

\n");

scanf("%i",&i);

while (i

> 0)

{

outnum = i % 10; /* strip off last digit */

revnum = revnum * 10 + outnum;

84

printf("%i \n",outnum); /* print it */

i = i /10; /* divide current number by 10

effectively dropping last

digit */

safe =

revnum;

printf(''\n\

n'');

85

while (revnum > 0)

{

outnum = revnum % 10; /* strip off last digit */

printf("%i \n",outnum); /* print it */

revnum /= 10;

}

printf(''\n\n'');

/* now print digit by digit with english words */

while (safe > 0)

{

outnum = safe % 10; /* strip off last digit */

printf("%i\t",outnum); /* print it*/

printf(" % s\t",words [outnum]);

switch(outnum)

{

case 0:

printf("Zero\

n");

break;

case 1:

printf("One\

n");

break;

case 2:

printf("Two\

n");

break;

case 3:

printf("Three\

n");

break;

86

case 4:

printf ("Four");

break;

case 5:

printf("Five\

n");

break;

case 6:

printf("Six\

n");

break;

case 7:

printf("Seven\n);

break;

case 8:

printf("Eight\

n");

break;

case 9:

printf("Nine\n"); break;

}

safe /= 10; /* divide current number by 10 */

}

}

87

errors.c

/* putting a semi colon after a definition */

#define MAX_VALUE 100;

/* forgetting that upper and lower case matter */

#define ONE 0;

main () {

int j = 200; int k = 0;

/* adding a semi-colon where there shouldn't be one */

if(j = 100);

printf("J = 100\n");

/* leaving off a semi-colon where there should be one */

/* won't compile because of #if 0 */

#if 0

if(j = 100)

/* missing a semi-colon where you need one */

printf("l = 100\n")

else

printf("J not equal to 100 \n");

/* using one = where you need two == */

if (j = MAX_VALUE)

printf("J was equal to MAX_ VALUE\n");

#endif

/* putting = instead of == in a conditional */

if(j = 1)

printf("J was equal to 1 \n");

/* not using parantheses on math and forgetting */

/* the precedence of operations */

j = 1 + 2 - 3 * 4/ 5 / 6 * 7 - 8 + 9;

primf("J = %d \n",j);

88

#if 0

j = One;

printf("j = %d \n",j);

#endif

/* forgetting the & character in scanf calls will cause core dump * /

printf("Enter value for j \n");

scanf("%i", j);

printf(“You entered %i\n",j);

Here is a line of code actually found in a 'real' delivered

product:

if (length = 8) length == 7; /* if length is 8 reset it to 7 */

it was quite interesting to determine what if anything to do with or about this ..

What would you have done??

89

prog22.c simple array

/* introduces simple array */

/* note that indexing goes from 0 to 4 */

/* declaration syntax indicates 5 cells */

/* starting at index 0 */

main()

{

int array1[5];

int i;

arrayl[0] = 23;

array1[1] = 17;

array1[2] = 29;

array1[3] = 3;

array1[4] = -7;

for (i = 0; i <= 4; i++)

{

printf("array1[%i] = %i \n",i,array1[i]);

}

/*

arrayl[0] = 23

array 1 [1] = 17

array1[2] = 29

array 1 [3] = 3

array 1 [4] =-7

*/

90

Arrays: Discussion

To declare an array we state the type of its elements, the name of the array, and the

number of elements in it:

int arl[l0];

defines storage for an array of 10 integers called arl.

Since all calls in C are call by value, what is the value of arl if we were to pass it to a

function?

Mentioning arl with no subscript is to mention its address. This means the address of

the first element in the array. When an array is subscripted, like: ar[1] = 42;

what actually happens is this, the compiler generates the code to take the starting

address of the

array (the address of the zero-th element, arl), adds the size of 1 integer to it (to get the

address of the element at location 1 in the array) and 'goes to' that address. In this case

we are doing an

assignment operation, so the correct code is generated to perform a memory store at

that address.

Since the compiler generates the address in this way, it assumes the programmer has

verified that

the resulting address will be correct. There are no array bounds checking in C, neither

at com-

pile nor at run time! Part of the reason for this is to maximize execution speed, the

other is that

the authors wish to place the responsibility for (orrectness upon the programmer at

design time.

Other languages (like Pascal) enforce tight run-time checking.

Arrays may have more than 1 dimension:

int two_dim [2] [3l={ { 1,2,3 }, { 4,5,6} };

two_dim is a 2 by 3 array of integers. There are 2 rows of three columns.

Or we might say two_dim is an array of 2 3 integer arrays. In fact this is a better

description as that is how it is stored remember, a 3 integer array is represented by its

address. So two_dim has 2 entries in it each of which is the address where a 3 integer

array begins in memory.

91

two_dim 1000

1012

The statement two_dim[1][2] = 42; is compiled as:

Take the address in two_dim[1], add 2 integer sizes to it and go to that address and

assign the

value 42 (1012 + (2 * 4) = 1020 the address of the third item in the second row)

92

prog23.c array boundaries
 main()

{

int array1[5] = { 23, 17, 29, 3,

-7 };

/* print out values in

array */

for (i = 0- i <= 4- i++)

printf("arrayl[%i] = %i

\n",i,arrayl[i]);

/* print out values in array and beyond boundaries of

array */

for (i = -4; i < 10; i++)

printf("arrayl[%i] = %i \n",i,arrayl[i]);

}

/* sample output */
array 1 [0] = 23
array1[1] = 17
array1[2] = 29
array1[3] = 3
array 1 [4] =-7
array 1 [-4] = 3
array1[-3] = 16
array1[-2] = -2130509557
array1[-1] = -1
arrayl[0] = 23
array 1 [1] = 17
array1[2] = 29
array1[3] = 3
array 1 [4] =-7
array1[5] = 0
array 1 [6] = 0
array 1 [7] = 0
arrayl[8] = 0
array 1 [9] = 0

93

prog25.c more array boundaries

/* note that values are assigned beyond declared
space */
main ()
{

int array 1[5];
int i;

/* valid initialization * /
arrayl[0] = 23;
arrayl[1]=l7;
array1[2] = 29;
arrayl[3] = 3;
arrayl[4] = -7;

/* these values are stored but can't be
addressed */
/* you can read from them but you can't
write to them */
/* because they are not part of your data
space * /
x = array 1 [5] = 24;
array1[6] = 9848;
array1[7] = -38495;

for (i = 0; i <= 7; i++)
printf("arrayl[%i] = %i
\n",i,arrayl[i]);

/
*sam
ple
output
array
1 [0]
= 23
arrayl
[l] =
17
array
1 [2]
= 29
array
1 [3]
= 3
array1
[4] =-
7
arrayl
[5] =

94

0
arrayl
[6] =
0
array1
[7] =
0
*/
QUESTION? Will x be set to 24 or 0?
Answer! 24, even though array 1 [5] is not set!
NOTE: on some systems (DOS for example) arrayl[5] may have been set to 24.
BEWARE: indexing outside array bounds can be very dangerous and causes many
headaches for both new and seasoned C programmers. Sometimes this is refered to
as having a "wayward pointer" meaning storing or retrieving data from who-knows-
where. These can be particularly nasty bugs to debug. In this example storing at
arrayl[5] will quite possibly overwrite the variable i. On many systems storing a
value at arrayl[-l] will cause an addressing exception (mainframe).

95

prog26.c bowling scores, array processing

/* program to calculate the average of a set of bowling

scores */

/* only count scores over 100 for person's average */

/* print out the high and low scores, all scores, scores used in

average*/

/* print out average */

#define MAX_SCORES 100

#define MAX_SCORE 300

#define MIN_SCORE 0

#define MIN_LEAGUE_SCORE 100

main ()

{

/* scores will be the array of scores entered * /

int scores[MAX_SCORES];

/* numscores is the count of how many scores they want to enter */

int numscores, i, score;

/* scores_to_count are used to keep track of how many valid scores there

were */

int raw _scores_to_count = 0;

int league_scores_to_count = 0;

int score_total = 0;

/* the averages are floats because I want floating point

accuracy */

float raw_average;

float league_average;

/* initialize current high and low

score */

int high = 0;

int low = MAX_SCORE;

96

/* find out how many scores the person will be

entering */

printf("How many scores will you be entering?");

scanf("%i", &numscores);

printf(''\nYou entered %d scores \n",numscores);

if (numscores >

MAX_SCORES)

{

printf("CANNOT TAKE THAT MANY, %i is

max\n",MNCSCORES);

exit(-1);

}

}

/* for each of the scores requested, get the score */

for (i = 1; i <= numscores; i++)

{

printf(,'\nEnter score #%i: ",i);

sc anf(" % i" ,&score);

printf("You entered %i\n",score);

/* if scores was less than 100 * /

/* don't count in average */

if ((score < MIN_SCORE) || (score> MAX_SCORE))

printf("Impossible score \n");

else

{

/* insert score into array */

scores [raw _scores_to_count] = score;

/* update the total of all scores */

score_total = score_total + score;

raw _scores~to_count++;

97

if (score > high)

high = score;

if (score < low)

low = score;

} /* end for loop */

if (raw _scores_to_count > 0)

{

raw _average = score_total/raw _scores_to_count;

printf(''\nRaw average = %.2f\n", raw_average);

printf("High score was %i \n",high);

printf("Low score was %i \n",low);

}

else

printf("No valid scores entered\n");

score_total = 0;

league_scores_to_count = 0;

printf(''\n\nLIST OF LEAGUE SCORES USED IN AVERAGE\n");

for (i= 0; i < raw _scores_to_count; i++)

{

if (scores[i] > MIN_LEAGUE_SCORE)

{

printf(''\t%i\n'' ,scores [i]);

league_scores_to_count++;

score_total += scores[i];

if (league_scores_to_count > 0)

{

league_average = score_total / league_scores_to_count;

printf("\nLeague average = %.2f\n",league_average);

else

league_average = 100;

} /*end main */

98

How many scores will you be entering?

You entered 10 scores

Enter score #1: You entered 100

Enter score #2: You entered 200

Enter score #3: You entered 300

Enter score #4: You entered - 3

Impossible score

Enter score #5: You entered 50

Enter score #6: You entered 100

Enter score #7: You entered 200

Enter score #8: You entered 300

Enter score #9: You entered 79

Enter score #10: You entered 407

Impossible score

Raw average = 166.12

High score was 300

Low score was 50

LIST OF LEAGUE SCORES USED IN AVERAGE

200

300

200

300

League average = 250.00

99

prog27.c character arrays

&s address of s

s value of s

*s value stored at address stored in s

/* program to illustrate initializing a character array */

/* will be initialized three different ways */

/* null terminator is added to word1 */

/* size of wordl would be determined at initialization time*/

int i,t;

char wordl[] =

{"abcdefghij"};

main ()

{

char word3[] = {"1234567890123456789"};

/* null terminator is not added to word2 */

/* size of word2 would be determined at

initialization time*/

char word2[] = { 'H', 'e', 'l', 'l', 'O', '!' };

char word4[] = {"ABCDEFGHIJKLMNOP"};

/* null terminator is added to s size of s is size of pointer to char * /

/* space for s is allocated at initialization time since the thing in double

quotes must be stored somewhere The space for character string is

made on stack */

char * s = {"still yet another way, pointer to character"};

for (i = 0; i < 20; i++)

printf("%c %x\n", word1[i],

word1[i]);

printf(''\n'');

/* this is a really terrible thing to do, calling a subroutine over and over

each time it is called it returns the same value. */

for (i = 0; i < sizeof(word1); i++)

100

printf("%c", word 1 [i]);

printf(''\n'');

printf("%s",word1); /* this is

much better */

printf(''\n'') ;

for (i = 0; i < 20; i++)

printf("%c %x\n",

word2[i],word2[i]);

printf(''\n'');

t = sizeof(word2);

printf("sizeof word2

is %i \n",t);

for (i = 0; i < t; i++)

printf("%c", word2[i]);

printf(''\n'');

printf("%s", word2);

printf(''\n'');

for (i = 0; i < 20; i++)

printf("%c",s[i]);

printf(''\n'');

for (i = 0; i < sizeof(s); i++)

printf("%c",s[i]);

printf('\n");

for (i = 0; i < sizeof(*s); i++)

printf("%c" ,s[i]);

printf(''\n'');

printf("%s",s);

printf(“\n") ;

101

}

102

Output You'll See
a 61
b62
c 63
d64
e 65
f66
g 67
h 68
i 69
j 6a
0
1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39

abcdefghij
abcdefghij
H 48
e 65
l6 c
1 6c
o 6f
! 21
1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39
0 30
1 31
2 32
3 33
4 34
sizeof word2 is 6
Hello!
Hello! 1234567890123456789
still yet another wa
stil
s
still yet another way, pointer to character

103

Exercise 9

/* write a program to input a list of numbers into an array */

/* print the array elements forwards and backwards */

/*

Write a program to input a list of numbers into an array

Find the largest element of the array

Find the smallest element of the array

Put the smallest value at position 0 in the array and

put the value that was at position 0 where the

smallest value used to be

Print out the updated array */

104

Solution for Exercise 9
int main ()

{

int array[l0] = {1, 3,5, -2, -6, 7, 4, 9, 12,932 };

int i, hipos, lopos, temp;

hipos = lopos = 0;

printf("Original Array \n");

for (i = 0; i < 10; i++)

{

printf("Array position %i value %i

'n",i,array[i]);

if (array[i] > array[hipos])

hipos = i;

if (array[i] < array[lopos])

lopos = i;

}

printf'(“Largest value is %i at index %i \n",array[hipos],hipos);

printf("Smallest value is %i at index %i \n",array[10pos],lopos);

/* switch lowest value to position 0, moving position 0 to where lowest came

from */

temp = array[lopos];

array[lopos] = array[0];

array[0] = temp;

printf("Updated

Array \n");

for (i = 0; i < 10;

i++)

printf("Array position %i value %i

'n",i,array[i]);

} /* end main */

105

Exercise 10

/* write a program to sort an array of

numbers */

/* use the array 1 35 -2 -67 49 12932

*/

/* sort the array from low to high */

/* print out the original and the sorted array */

/* DO NOT use a second array to sort the

numbers into,

you have to sort them in the array

they are in */

Note: you may implement the sort however you are

comfortable

The following is pseudocode for the so-called

bubble sort:

(ASSUMES ZERO BASED INDEXING)

FOR INDEX1 IS 0 TO NUMBER OF ELEMENTS IN

ARRAY-1

(from first to second to last)

FOR INDEX2 IS INDEX1 +1 To NUMBER OF ELEMENTS IN

ARRAY

(from second to last)

IF ELEMENT AT INDEX 1 IS GREATER THAN THE ELEMENT

AT INDEX2

SWAP ELEMENTS AT INDEX 1 AND INDEX2

ENDIF

ENDFOR

ENDFOR

106

Solution for Exercise 10
main ()

{

int array[l0] = { 1,3,5, -2, -6, 7, 4, 9, 12,932 };

int temp;

int i,j;

printf("Original unsorted array \n");

for (i = 0; i < 10; i++)

{

printf("%i\t%i\n" ,i,array[i]);

}

for (i = 0; i < 9; i ++)

{

for (j = i + 1; j < 10; j++)

{

if (array[j] < array [i])

{

temp = arrayjj];

arrayjj] = array[i];

array[i] = temp;

} /* end if */

} /* end for j loop */

} /* end for i loop */

printf(''\n\nSorted Array\n");

for (i = 0; i < 10; i++)

printf("%i\t%i\n" ,i,arra y[i]);

}

107

Function definition and prototypes

When we #include <stdio.h> what happens? The file stdio.h gets imbeddeed into our

program.

The file stdio.h contains the prototypes for functions like printf (and other stuff).

A prototype is a declaration of what the interface for a function looks like. For

printf it is:

unsigned printf(char *, ...);

This indicates that the printf function returns an unsigned int, and requires at least

one argument, which must be a character string.

The compiler "remembers" the protytype after it "sees" it and will check our code to

verify that

we are using it correctly. If we fail to pass printf at least a character string we will get

a compiler

error. If we assign printf's return value to a non-unsigned, we will get at least a

compiler warning.

When we write our own functions we will want to use prototypes to allow the

compiler to provide the same type of checking as with printf.

If the compiler does not see a prototype for a function but sees it being used it will

issue a warning and there will be no checking performed. This is deemed to be poor

programming practice. We should always use prototypes to allow the compiler to

verify our interfaces as well as our usage. A prototype is also known as a function

declaration. To "declare" in C means to state that something exists (usually

somewhere else).

The actual code for a function is called the function definition. To "define" in C

means to create

code or storage.

Just as a note, many other languages support similar concepts as

prototypes.

108

prog29.c elementary function declaration and usage

/* definition of subroutine */

/* should be defined before

it is used */

/* type of value it returns

name

type of arguments it expects */

/* program execution does not start here * /

/* this code is only executed when the subrl routine

is called */

void subr1(void) /* this is called the function

header */

{

printf("In

subroutine\n"

);

return;

}

/* this is where program

execution starts */

main()

{

/* declaring that main will call subr1 */

/* function prototype header needs to go before first executable

statement */

void subr1(void);

printf("In main

routine \n");

subr1():

printf("Back in main routine \n");

}

109

/* sample output */

In main routine

In subroutine

Back in main routine

If we hadn't placed the prototype for subrl in main, the compiler by default woud
assume that the function header correctly stated the return and parameter types. This
only works because the compiler 'sees' the function definition in the same file as it is
used. Again this is deemed poor style. If the definition for subrl was after main in the
source file, we must place the prototype for subrl before it's use in main. Leaving out
the prototype wouldn't work as the compiler would not see the header line before it
was used.

110

prog30.c calling subroutines

/* definition of subroutine */

/* should be defined before it is used * /

/* type of value it returns

name

type of arguments it expects */

/* program execution does not start here */

/* this code is only executed when the subrl routine is called */

void subr1(void)

{

printf("In subroutine\n");

return;

}

/* this is where program execution starts */

main()

{

/* declaring that main will call subrlO */

void subr1(void);

printf("In main routine \n");

subr1();

subr1();

subrl ();

printf("Back in main routine \n");

 }

111

prog31.c passing constants to subroutines

/* definition of subroutine, should be defined before it is used */

/* type of value it returns

name

type of arguments it expects */

/* program execution does not start here */

/* this code is only executed when the subrl routine is called */

void subr1(int n) {

/* n is a local variable (argument) who's purpose is to */

/* receive a copy of the parameter passed from main routine */

/* i is a local variable it wi11live on stack */

/* it will be deallocated when routine exits */

int i;

for (i = 0; i < n; i++)

printf("In subroutine i = %i n = %i \n",i,n);

return;

}

/* this is where program execution starts */

main()

{

/* declaring that main will call subr1() */

void subr1(int);

printf("In main routine \n");

/* calling subrl, sending 5 by value */

subr1 (5);

printf("Back in main routine \n");

}

/* sample output */
In main routine
In subroutine i = 0 n = 5
In subroutine i = 1 n = 5
In subroutine i = 2 n = 5
In subroutine i = 3 n = 5
In subroutine i = 4 n = 5
Back in main routine

112

prog32.c passing variables to subroutines

/* program execution does not start here */

/* this code is only executed when the subrl routine is called

*/

void subr1(int n)

{

/* n is an argument passed from main routine, it is a local

variable */

/* i is a local variable, it will live on stack */

/* it will be deallocated when routine exits, as will n

*/

int i;

/* static variable lives in data area, it's value */

/* is retained between calls beware of static variables */

/* in general, assume no static area is available */

/* on some O/S, static variables are shared between all instances of the program

*/

/* this defeats re-entrancy */

static int j = 0;

for (i = 0; i < n; i+

+)

{

j++;

printf("In subroutine i = %d j = %d \n",i,j);

}

return;

/* this is where program execution

starts */

main ()

{

int x;

/* declaring that main will call

113

subr1() */

void subr1(int);

x = 2; printf("In main routine x = %i

\n",x);

subr1(x);

printf("Main routine location 1 x = %i \n\n",x);

x = 3; printf("In main routine x = %i

\n",x);

subr1(x);

printf("Main routine location 2 x = %i \n\n",x);

x = -4; printf("In main routine x = %i

\n",x);

subr1(x);

printf("Main routine location 3 x = %i \n\n",x);

}

/* EXERCISE */

/* WHAT WILL THE OUPUT

BE ?? */

SOLUTION TO EXERCISE

In main routine x = 2

In subroutine i = 0 j = 1

In subroutine i = 1 j = 2

Main routine location 1 x = 2

In main routine x = 3

In subroutine i = 0 j = 3

In subroutine i = 1 j = 4

In subroutine i = 2 j = 5

Main routine location 2 x = 3

In main routine x = -4

Main routine location 3 x = -4

114

115

prog33.c subroutines returning values (void keyword)

/* routine will return no value, expects to receive an integer, will call integer

n */

void cube1 (int n)

{int cube; /* local variable for subroutine */

cube = n * n * n;

printf("Cube of %i is %i

\n",n,cube);

return;

}

/* routine returns an int, expects an integer, will call integer

n */

int cube2 (int n)

{

int cube; /* local variable for subroutine */

cube = n * n * n;

return(cube);

}

main()
{

/* function prototype headers, not calls to subroutines */
void cubel (int);
int cube2 (int);
/* local variables for main */
int input_value;
int returned_value;
printf("Enter number to calculate cube of\n");
scanf("%i" ,&input_ value);
printf("Calling cubel\n");
/* there is no return value to catch */
cubel(input value);

printf(''\nCalling cube2\n");
/* there is a return value to catch */
returned_value = cube2(input_value);
printf("cube of %i is %i \n",inpuCvalue,returned_value);

}

116

A Few Words About Multi-Module Programs

In the 'normal' programming world, we typically will not have just 1 giant

source file. It makes more sense to have a file containing the main function, and one

or more other files that contain functions typically grouped by functionality.

Consider the three files test1.c funs1.c and funs2.c

test1.c funs1.c funs2.c

void main () void f1 () void f3 ()

{ { {

f1(); f3 (); some code

f2 (); } }

} void f2 ()

{

some code

}

Since main calls nand f2 it should have the prototypes for these functions

available to it at compile time. Likewise, since fl calls f3, it should have the prototype

for f3 available to it. We could try to remember to do this. However, there is an easier

way!

117

We can write our own header files (one or more):

myproto.h

void fl (void);

void f2(void);

void f3(void);

 Then we can load them all by using #include “myprot.h.”

test1.c funs1.c funs2.c

#include “myproto.h” #include “myproto.h” #incluee “myproto.h”

void main () void f1 () void f3 ()

{ { {

f1(); f3 (); some code

f2 (); } }

} void f2 ()

{

some code

}

including the prototype into funs2.c is important!

Even though function f3 does not call f1 or f2, the compiler will see the prototype for

function f3. The compiler will verify that the prototype matches the actual code for the

function

f3. If f3 were not coded with the correct number and type of parameters, or with the

wrong return type (versus the prototype) the compiler would issue a warning.

This is yet another check that our promised interface (prototype) matches the

actual code

we wrote and also how we will use it.

118

prog35.c multiple files being compiled together
/* main routine located in one file * /

/* subrl is located in another file func35a.c */

/* subr2 is located in another file func35b.c */

/* compile together via

acc -o prog35 prog35.c func35a.c func35b.c

*/

/* try acc prog35.c

then try acc prog35.c func35a.c

then try ace func35a.c func35b.c

then try ace -c prog35.c

*/

/* this is where program execution starts */

main ()

{

/* declaring that main will call subrlO */

void subr1(int);

void subr2(int);

printf("In main routine \n");

subr1(5);

printf("Main routine location 1\n\n");

subr2(3);

printf("Main routine location 2\n\n");

}

119

func35a.c

/* program execution does not start here */

/* this code is only executed when the subrl routine is called */

void subr1(int n)

{

void subr2(int);

/* n is an argument passed from main routine * /

/* i is a local argument, it will live on stack */

/* it will be deallocated when routine exits */

int i;

for (i = 0; i < n; i++)

{

printf("In subrl\n");

subr2(-17);

return;

}

}

func35b.c

/* program execution does not start here * /

/* this code is only executed when the subrl routine is called */

void subr2(int n)

{

/* n is an argument passed from main routine * /

/* i is a local argument, it will live on stack */

/* it will be deallocated when routine exits */

printf("In subr2\n");

printf("Square of %i is %i \n",n, n*n);

return;

}

120

valref.c Call By Value vs. Call by Reference

/* demonstrate call by value and call by reference */

void val1(int x) /* ansi function header

*/

{

x++; /* add one to x */

printf("In vall x = %i \n",x); /* print out its value */

return; /* return to calling

routine */

}

void refl (int* x) /* ansi function header */

{

*x = *x + 1; /* add one to value stored at address stored in x */

printf("In refl x = %i \n",*x);/* print it out */

return;

}

main()

{

int i = 5;

printf("In main i = %i \n",i);

val1 (i); /* pass value of i to val1 */

printf("In main i = %i \n",i); /* notice that val1 did not change i */

printf("In main i = %i \n",i);

ref1(&i); /* pass address of i to ref1 */

printf("In main i = %i \n",i); /* notice that ref1 changed i */

}

In main i = 5
In val1 x = 6
In main i = 5
In main i = 5
In refl1x = 6

121

In main i = 6

122

call by value

main routine stack subroutine

values are placed on stack

subroutine cannot "see" memory of main routine

subroutine can only "see" values on stack

call by reference

addresses are placed on stack

subroutine can "see" memory of main routine through addresses found on stack

123

Exercise 11
/* PART ONE */

/* write a program to input a number */

/*

Print the number in the main routine.

Pass the number to a subroutine by value.

Have the subroutine print the received value

Have the subroutine return twice the input value.

Have the main routine print the original and the result.

*/

/* PART TWO */

/* write a program to input a number */

/*

Pass the number to a subroutine by reference.

Have the subroutine multiply the value by three.

Have the main routine print the original value and the result.

*/

124

Solution for Exercise 11
main()

{

int i;

intj;

int twice(int);

void three_times(int *);

printf("Enter number \n");

scanf("%i",&i);

printf("You entered %i \n",i);

j = twice(i);

printf("Twice %i is %i\n",i,j);

printf(“three times %i is ",i);

three_times(&i);

printf("%i \n",i);

}

int twice(int n)

{

 return (n * 2);

}

void three_times(int * nptr)

{

*nptr *= 3;

return;

}

125

prog36.c

main ()

{

/* scores[0] is the zeroeth entry in scores */

/* &scores[0] is the address of the zeroeth entry */

/* scores all by itself, is semantically equivalent to &scores[0] */

int scores[5], i;

int determine 1 (int values[5]);

int determine2(int *);

/* useful to use data file prog36.dat */

printf("Please enter five scores \n");

for (i = 0; i < 5; i++)

{

printf("Score %i: ",i);

scanf("%i",&scores[i]);

printf(''\t %i \n",scores[i])

if (determine1 (scores) == 1)

printf("23 was in array \n");

else

printf("23 was not in array \n");

if (determine2(scores) == 1)

printf("50 was in array \n");

else

printf("50 was not in array \n");

if (determine3(scores) == 1)

printf("50 was in array \n");

else

printf("50 was not in array \n");

}

126

 }

prog36.c passing arrays to subroutines

/* write functions to find out if a value is in an

array */ #define SUCCESS 1

#define FAILURE 2

/* function returns an integer

*/

/* function name is

determine */

/* function accepts array of ten integers */

/* what it is really accepting is a pointer to the first element of the array */

int determine1 (int values[5]) {

int i;

for (i = 0; i < 5; i++) {

if (values[i] == 23)

return(SUCCESS);

}

return(FAILU

RE;

int determine2 (int * x) {

int i;

for (i = 0; i < 5; i++) {

if (x[i] == 50)

retum(SUCCESS);

}

return(FAILURE);

}

int determine3 (int* x) {

int i;

for (i = 0; i < 5; i++) {

if (*(x+i) == 50)

return(SUCCESS);

127

}

retum(FAILURE);

}

128

prog37.c passing pointers and arrays to subroutines

/* function to subtract every element by the element after
it* /
/* leave the last element alone */
/* this function demonstrates that array elements can
be */
/* manipulated by the function */
/* arrayptr is a pointer to an integer */
/* IT HAPPENS TO BE THE FIRST ELEMENT OF A TEN ELEMENT
ARRAY */
void subtracts(int • array _ptr)
{

int i;
for (i = 0; i < 9; i++)

array _ptr[i] = array _ptr[i] - array _ptr[i+ 1];
}

main ()
{

int scores[l0], i;
void subtracts(int *);

/* useful to use data file prog36.dat */
printf("Please enter ten scores \n");
for (i = 0; i < 10; i++)
{

printf("Score %i: ",i);
scanf("%i",&scores[i]);
printf(''\t %i \n",scores[i]);

}
printf("Array before function call \n");
for (i = 0; i < 10; i++)

printf("scores[%i]\t%i\n",i,scores[i]);

subtracts(scores);
printf("Array after function call \n");
for (i = 0; i < 10; i++)

printf("scores [%i]\t%i\n",i,scores [i]);
}

129

prog38.c sorting an array of integers

/* function to sort an array of integers into ascending order */

/* problem is, we can't hard code the size of the array into the function */

/* first solution is to pass the size of the array into function */

/* function returns nothing */

/* its name is sort * /

/* it expects an integer array, doesn't know how big it will be yet */

/* n will be an integer specifying the size of the array */

void sort (int *a, int n)

{

int i,j,temp;

for (i = 0; i < n -1; i++)

{

for (j = i + 1; j < n; j++)

{

if (a[i] > a[j])

{

temp = a[i];

a[i] = a[j];

a[j] = temp;

} /* end if */

} /* end for j loop */

} /* end for i loop */

} /* end sort function */

#define MAX_ARRAY 100

/* main routine to call sort and display results */

main ()

{
int i;
int num_elements;
/* don't know how big array needs to be */
int array[MAX_ARRAY] ;

130

void sort(int *, int);
/* get and error check number of elements */
printf("How many elements in array'!\n");
scanf("%i" ,&num_elements);
if (num_elements < 0 || num_elements > MAX_ARRAY)
{

printf("Impossible number of elements\n");
exit(-1);

}
/* have a good number of elements, continue */
for (i = 0; i < num_elements; i++)
{

printf("Enter value for element %i \n",i);
scanf(" %i ",&array[i]);

}
printf("The array before the sort is:\n");
for (i = 0; i < num_elements; i++)

printf("%i ",array [i]);
printf("\n\n");

/* call the subroutine to do the sort */
/* pass the address of the array and number of elements */
sort(array, num_elements);

printf("The array after the sort is: \n");
for (i = 0; i < num_elements; i++)
printf("%i ",array[i]);
printf(''\n\n'') ;

 }

131

How many elements in array?
5

Enter value for element 0

1

Enter value for element 1

4

Enter value for element 2

2

Enter value for element 3

3

Enter value for element 4

9

The array before the sort is:

1 4 2 3 9

The array after the sort is:

1 2 3 4 9

132

sortstep.c

void sortstep(int *, int, int);

main ()

{

int i,j;

int array[3][4] =

{

{ 0, 1,2,3 },

{ -1, -2, -3, -4 },

{ 10, 20, 30, 40 }

};

printf("array before call is \n");

for (i = 0; i < 3; i++)

{

for (j = 0; j < 4; j++)

printf("%3i ",array[i][j]);

printf(''\n'');

}

sortstep (&array [0] [0],3,4);

printf("array after call is \n");

for (i = 0; i < 3; i++) {

for (j = 0; j < 4; j++)

printf("%3i ",array[i] [j]);

printf(''\n'');

}

sortstep(&array[1] [0],4, 1);

printf("array after call is \n");

for (i = 0; i < 3; i++)

{

for (j = 0; j < 4; j++)

printf("%3i ",array[i][j]);

printf(''\n'');

133

 }

}

void sortstep (int *a, int n, int stepsize)

{

int i, j, temp;

int iindex, jindex;

for (i = 0; i < n -1; i++)

{

iindex = i * stepsize;

for (j = i + 1; j < n; j++)

{

jindex = j * stepsize;

if (a[iindex] > a[jindex])

{

temp = a[iindex];

a[iindex] = ajjindex];

aljindex] = temp;

} /* end if */

} /* end for j loop */

} /* end for i loop */

} /* end sort function */

array before call is
0 1 2 3
-1 -2 -3 -4
10 20 30 40

array after call is
-1 1 2 3
0 -2 -3 -4
10 20 30 40

array after call is
-1 1 2 3
-4 -3 -2 0
10 20 30 40

134

prog39.c program to introduce
two dimensional arrays
main()
{

/* rc cola */
/* rows, columns */
/* 2 rows, three columns */

/* C THINKS OF SAMPLE_MATRIX AS AN ARRAY WITH TWO ENTRIES
EACH ENTRY HAPPENS TO BE AN ARRAY OF THREE
ENTRIES */

/* sample_matrix[0] is an array, sample_matrix[0][0] is an
integer */
int sample_matrix[2] [3] =

{
{ 1,2
,3 },
{ 3,5
,9 }

} ;
int row,column;
int rowsum, colsum;

/* print original matrix */
printf("Original matrix
\n");
for (row = 0; row < 2;
row++)
{

for (column = 0; column < 3; column++)
printf("%3i" ,sample_matrix[row][column]);

printf(''\n'') ;
}
printf(''\n\nMATRIX WITH ROWSUMS AND COLUMN
SUMS\n");
/* add up rows and columns, produce report */
printf(''\t\t rowsum\n");
for (row = 0; row < 2; row ++)
{

rowsu
m =0;
printf("
\t");
for (column = 0; column < 3; column++)
{

printf("%3i" ,sample_matrix [row] [column]);
rowsum += sample_matrix[row][column];

}
printf(" %4i\n",rowsum);

}

135

printf(''
\n'');
printf("colsum\t");

for (column = 0; column < 3; column++)

{

colsum = 0;

for (row = 0; row < 2; row++)

colsum += sample_matrix[row] [column];

printf("%3i" ,colsum);

}

printf('\n\n");

}

/* sample output */

/*

Original matrix

1 2 3

3 5 9

MATRIX WITH ROWSUMS AND COLUMN SUMS

rowsum

1 2 3 6

3 5 9 17

colsum 4 7 12

*/

136

Sending Two Dimensional Array To Subroutine

twodim.c
main()
{
/* function prototype header must supply row and column

information
if we wish to use multiple sets of [] in subroutine */

void s1(int a[2][3]);
/* x all by itself is the address of the 1st array * /
int x[2][3] = /* x is an array with two elements, each element is itself an array
*/
{

{1,2,3},
{ 4,5,6}

};
printf(" AA \n");
s1(x); /* call using just name of array, resolves to &x[0], an array */

printf("BB\n");
sl(&x[0]); /* call using address of first “array of arrays */

printf("CC\n");
sl(&x[0][0]); /* call using address of first element of first array*

/* compiler warning b/c this is address of an integer, not an
array */
}

void s1(int x[2][3])
/* converted to int** */
{

int i,j;
for (i = 0; i < 2; i++)
{

for (j = 0; j
< 3; j++)
{

/* function declaration informs us of how many rows and
columns */
printf("%i ",x[i] U]);

}
p
ri
n
tf
(
"\
n
"
);

137

}
}

138

Solution for Exercise 13
/* function returns nothing * /
/* its name is sort * /
/* it expects an integer array, doesn't know how big it will be

yet */

/* n will be an integer specifying the size of the array */

void sort (int a[], int n)

{

int i,j,temp;

for (i = 0; i < n; i+

+)

{

for (j = i + 1; j < n; j++)

{

if (a[i] > a[j])

{

temp =

a[i];

a[i] =

a[j];

a[j] =

temp;

} /* end

if */

} /* end for j

loop *

} /* end for i loop */

} /* end sort

function *

139

#define ROWS 3

#define COLS 4

main()

{

int input_array[ROWS][COLS];

int temp_array[ROWS][COLS];

int final_array[ROWS][COLS];

int row[COLS], col[ROWS];

void sort (int a[], int n);

int i,j;

/* get and print original array */

printf(''\n'');

for (i = 0; i < ROWS; i++)

{

for (j = 0; j < COLS; j++)

{

scanf("%i",&input_array[i][j]);

printf("%3i",input_array[i][j));

}

printf(''\n'');

}

for (i = 0; i < ROWS; i++) /* sort by row */

{

for (j = 0; j < COLS; j++)

row[j] = input_array[i][j]:

sort(row,COLS);

for (j = 0; j < COLS; j++)

temp_array[i][j] = row[j];

}

printf('\n\nAFfER SORTING ROWS\n"); /* print array */

for (i = 0; i < ROWS; i++)

{

140

for (j = 0; j < COLS; j++)

printf("%3i" ,temp

_array[i] u]);

printf('\n");

}

for (j = 0; j < COLS; j++) /* sort by column */

{

for (i = 0; i < ROWS; i++)

col[i] = temp_array[i][j];

sort(col,ROWS);

for (i = 0; i < ROWS; i++)

final_array[i][j] = col[i];

}

printf(''\n\nAFTER SORTING COLS\n"); /* print array */

for (i = 0; i < ROWS; i++)

{

for (j = 0; j < COLS; j++)

printf("%3i" ,final_array[i][j]):

printf'(“\n"):

}

printf('\n");

} /* end main */

sample output
1 3 2 15
3 8 0 2
9 4 -3 12

AFTER SORTING ROWS
1 2 3 15

0 2 3 8
-3 4 9 12

AFTER SORTING COLS
-3 2 3 8

 0 2 3 12
 1 4 9 15

141

More Array Syntax & Subroutines

testarrays.c

The basic problem when communicating array information to a subroutine is how

many rows

and how many columns, (or how many entries per dimension) the array has. Basic

pointer syntax only provides the address of the first element. This is fine if we wish to

only traverse the

memory allocated for the array, however, if we wish to traverse it using the row and

column layout we have specified when the array was created, we need to provide some

row column information to the subroutine. As a rule, if there are N dimensions in the

array you need to provide at least N-1 pieces of dimension information, the computer

can figure out the last dimension. However, to be rigorous, why not provide as much

as possible, all N if you know it. There are applications when you won't know the last

dimension information.

void

s1(int *

x,int n)

{

int i;

for (i = 0; i < n; i++)

printf("%5i", x[i]);

printf(''\n'');

}

vo

id

s2

(in

t

x)

{

142

printf("Ox%x",x);

printf(''\n'');

}

143

main ()

{

void sl(int *,int);

void s2(int);

int one[5];

int two[3][4]; two[0][0] = 0;

 two[0][1] = 1

two[0][2] = 2;

 two[0][3] = 3;

two[1][0] = 10;

two[1][1] = 11;

two[1][2] = 12;

two[1][3] = 13;

two[2][0] = 100;

two[2][1] = 101;

two[2][2] = 102;

two[2][3] = 103;

one[0] = 0;

one[l] = 1;

one[2] = 2;

one[3] = 3;

printf("FIRST PRINT\n");

sl(one,S); /* array name by itself is pointer */

sl(&one[2],3); /* subscripted element needs & */

s1(one + 2,3); /* subscripted element needs & */

#if 0

sl(one[2],3); /* this would be run time error, subscripted element needs & */

#endif

144

s2(one); /* array name by itself is pointer, routine expecting int, prints it as int

*/

s2(one[3]); /* subscripted element is a value, routine expecting value, okay

*/

printf("SECOND PRINT\n");

sl(two,12); /* name of array by itself is pointer */

sl(two[0],4); /* name of array by itself is pointer, two[0] is name of an array

because two is an array of three elements,

of which each element is itself an array */

sl(two[1],4); /* name of array by itself is pointer */

sl(two[2],4); /* name of array by itself is pointer */

#if 0

sl(two[0][0],12); /* subscripted element is value,

routine expecting address, core

dump */

#endif

sl(&two[0][0],12); /* subscripted element needs & */

s2(two);

s2(two[0]);

s2(two[1]);

s2(two[2]);

s2(two [0] [0]);

s2(two[1][0]);

s2(two[2][0]);

s2(&two[0]);

145

SAMPLE OUTPUT

FIRST PRINT

0 1 2 3 4

2 3 4

Oxf7fffb34

Ox3

SECOND PRINT

0 1 2 3 10 11 12 13 100 101 102 103

0 1 2 3

10 11 12 13

100 101 102 103

0 1 2 3 10 11 12 13 100 101 102 103

Oxf7fffb04

Oxf7fffb04

Oxf7fffb14

Oxf7fffb24

OxO

Oxa

Ox64

0xf7fffb04

146

Yet Even More Array Syntax & Subroutines

test_arrays1.c

void s 1 (int * x,int n)

{

/* will access as many as you say starting where you say */

int i;

for (i = 0; i < n; i++)

printf("%5i" ,x[i]);

printf(''\n'');

}

void s2(int * x, int rows, int cols)

{

/* wants to use multiple square brackets, needs dimension info */

int i,j;

for (i = 0; i < rows; i++)

{

for (j = 0; j < cols; j++)

{

#if 0

/* this will be a compiler error */

/* routine does not have info on row,column

layout of memory associated with x */

printf("%4i ",x [i][j]);

#endif

}

}

}

147

void s3(int x[3][4],int rows,int cols)

{

/* wants to use multiple square brackets, needs dimension info */

int i,j;

for (i = 0; i < rows; i++)

{

for (j = 0; j < cols; j++)

{

/* this will be a compiler error * /

/* routine does not have info on row,column

layout of memory associated with x */

printf("%4i ",x[i] [j]);

}

}

}

148

main ()
{

void s 1 (int * ,int);
void s2(int * ,int,int);
void s3(int [3][4],int,int);

int one[5];
int two[3][4];
two[0][0] = 0; two[0][1] = 1;
two[0][2] = 2; two[0][3] = 3;
two[l][0] = 10; two[1][1] = 11;
two[1][2] = 12; two[1][3] = 13;
two[2][0] = 100; two[2][1] = 101;
two[2][2] = 102; two[2][3] = 103;
one[0] = 0; one[1] = 1; one[2] = 2;
one[3] = 3; one[4] = 4;

/* call s 1 sending different lengths */
printf(''\ncalling s 1 \n");
s1(one,5);
s1(two,12); /* will be compiler warning */
s 1 (one, 10);

/* try to call s2 , it won't work */
printf(''\ncalling s2 \n");
s2(one,1,5);
s2(two,3,4); /* will be compiler warning */
/* try to call s3 * /

printf(''\ncalling s3 for one\n");
s3(one,1,5);/* will be compiler warning */
printf(''\ncalling s3 for two \n");
s3(two,3,4);
printf(''\ncalling s3 for one\n");
s3(one,2,4);/* will be compiler warning */
printf(''\n'');

}

149

acc testarrays 1.c

"testarrays l.c", line 70: warning: argument is incompatible with prototype: arg #1

"testarrays1.c", line 76: warning: argument is incompatible with prototype: arg #1

"testarrays1.c", line 80: warning: argument is incompatible with prototype: arg #1

"testarraysl.c", line 84: warning: argument is incompatible with prototype: arg #1

a.out

calling sl

0 1 2 3 4

0 1 2 3 10 11 12 13 100 101 102 103

0 1 2 3 4 0 0 0 0 0

calling s2

calling s3 for one

0 1 2 3 4

calling s3 for two

0 1 2 3 10 11 12 13 100 10 1 102 103

calling s3 for one

0 1 2 3 4 0 0 0

150

prog40.c static, automatic, global keywords

/* two possible compile strings

acc -D COMPVAR1 prog40.c additional code

acc prog40.c no additional code */

/* program to demonstrate static and automatic

variables */

/* program to demonstrate global variables */

/* we already did this once, do it again */

/* automatic variables go on the stack */

/* static variables go in data area */

int g; /* no initial value is assigned */

void subrl (void)

{

int local_ variable_is_auto = 1;

static int local_ variable_is_static = 1;

local_variable_is_auto++;

local_ variable_is_static++;

g++;

printf("%i %i %i\n", local_ variable_is_auto, local_ variable_is_static,g);

}

main ()
{

void subr1 (void);
g = 0;
printf("Global variable = %i \n",g);
subr1();
g++;
subr1();

#ifdef COMPVAR1
local_ variable_is_auto++;
local_ variable_is_static++;
printf("%i %i %i\n", local_ variable_is_auto, local_ variable_is_static,g);
printf("%i\n",g);

#endif
}

151

Scope.c Scope of Variables

int i = 1; /* global variable */
void subr1(void);
void subr2(void);
main ()
{

/* local i overrides global i * /
int i = 2;
printf("AAA i = %i \n",i);

/* call subroutine to test scope */
subrl();
{

int i = -8032;
printf(''\tBBB i = %i \n",i);

}

/* call subroutine to test scope */
subr2();

}

void subrl()
{

/* local i overrides global i */
int i = 23;
printf(''\tCCC(i = %i \n", i);
{

/* interior i overrides exterior i */
int i = -98;
printf(''\t\tDDD i = %i \n",i);

}
}

void subr2()
{

/* no local i, refers to global i */
printf(''\t\t\tEEE i = %i \n",i);
{

/* no local i, refers to global i */
printf(''\t\t\t\tFFF i = %i \n",i);

}
}

152

AAAi=2

CCCi = 23

DDD i = -98

BBB i = -8032

EEEi = 1

FFFi= 1

153

Definition: recursive adj. see recursive1

prog41.c Recursion

/* program illustrating recursive function */

/* recursive

function */

int

length(char

* s)

{

printf("In length\n");

if (*s == '\0')

return(1);

else

return(1 + length(s + 1));

}

main ()

{

char

string[20];

printf("Enter a

string \n");

scanf("%s"

,&string);

printf("You entered %s\n",string);

printf("Its length is %i \n", length(string));

}

Recursion can be misused. This is actually a poor example of 'tail recursion' (when the
last thing
a routine does is call itself). Most tail-recursive programs are better written iteratively
including

154

this one. Recursion is best used when the problem itself can be described in it's
simpliest terms in a recursive manner (splitting a string in half, and in half etc), or the
data structures involved may be viewed as recursive (binary trees, fractals)2.

1. definition found in several sources, not possible to identify first author

2. See the book Data Structures and Program Design in C , for a good reference

on recursion in C and guidelines on when to and not to use it. This book also contains

a section in one appendix on removing recursion from programs.

155

testpop.c

/* if you implemented s 1 here, there would be compiler errors

when you tried to send a different argument list */

main ()

{

/* if you had a prototype, you would get compiler errors

when you tried to send a different argument list */

s1();

s1(l0);

s1(100,200);

s1 (1000,2000,3000);

s1 (10000,20000,30000,40000);

}

/* you need to declare it int to avoid redefining the default argument

type */

int s1(int a, int b)

{

printf("a is %i \n",a);

printf("b is %i \n",b);

printf(''\n'');

}

a

i

s

0

b is 124

a is 10

b is 124

a

156

is

10

0

b

is

20

0

a is

100

0

b is

200

0

a is 10000

b is 20000

157

Exercise 14

/* write a program with functions to do array math */

/* use the two arrays */

/* array! = { 1,2,3,4} */

/* array2 = { 5, 6, 7, 8} */

/* have a fuction to add the two arrays */

/* { 6, 8, 10, 12 } */

/* have a function to multiply the arrays */

/* { 5, 12, 21, 32 } */

/* have a funtion to do the mproduct of the arrays */

/* { (l *5 + 1 *6 + 1 *7 + 1 *8)

(2*5 + 2*6 + 2*7 + 2*8)

(3*5 + 3*6 + 3*7 + 3*8)

(4*5 + 4*6 + 4*7 + 4*8) } */

/* allow the user to specify which function they want */

/* to perform, have them type q to quit */

/* allow them to enter functions until they decide to quit */

158

Solution for Exercise 14

void add_arrays (int a[], int b[], int size)
{

int, temp;
printf("Add arrays \n");
printf("Arrayl\tArray2\t:Sum\n");
for (i = 0; i < size; i++)
{

temp = a[i] + b[i];
printf("%i\t%i\t%i \n" ,a[i] ,b[i] ,temp);

}
return;

}

void mult_arrays (int a[], int b[] , int size)
{

int i, temp;
printf("Multiply arrays \n");
printf("Arrayl\tArray2\tMult\n");
for (i = 0; i < size; i++)
{

temp = a[i] * b[i];
printf("%i\t%i\t%i \n",a[i] ,b[i] ,temp);

}
return;

}

void product arrays (int a[], int b[] , int size)
{

int i,j,temp;
printf("product arrays \n");
printf("M Product\n");
for (i = 0; i < size; i++)
{

temp = 0;
for (j = 0; j < size; j++)
{

temp = temp + a[i] * b[j];
printf("%i\n" ,temp);
}

return;
 }

159

main ()
{

void add_arrays (int a[], int b[] , int size);
void mult_arrays (int a[], int b[] , int size);
void product arrays (int a[], int b[] , int size);
int a1 [] = { 1, 2, 3, 4 }; int a2[] = { 5, 6, 7, 8 };
char choice, carriage_return;
choice = ‘ ‘;
while (choice != 'q')
{

printf(''\nEnter choice:\n");
printf("a add\n");
printf("m multiply\n");
printf("p product\n");
printf("q quit\n");

scanf(" %c",&choice);
printf("You entered %c\n",choice);
scanf("%c", &carriage_return);
switch (choice)
{

case 'a':
add_arrays(a1 ,a2,4);
break;

case'm':
multarrays(a1,a2,4);
break;

case 'p':
product_arrays(a1,a2,4);
break;

case 'q':
break;

default:
printf(''\alnvalid input\n");
break;

} /* end switch */
} /* end while */

} /* end main */

160

exseven.c

void add_arrays(int * a, int * b, int size)

{

inti, temp;

for (i = 0; i < size; i++)

{

temp = a[i] + b[i];

}

return;

}

161

prog42.c simple stucture (struct keyword)

main ()

{

/* syntax is: data type then name of variable */

int i;

float f1;

/* syntax is: struct then name of structure type */

/* this is a definition of a type, not a declaration of a vraiable of that type */

struct date

{

/* elements of structure declared like variables */

int month;

int day;

int year;

};

/* syntax is: data type then name of variable */

struct date x; x is the name of the variable to be

created

struct indicates

that next word

is user defined data type

date is the user defined data type

x.month = 4;

x.day = 28;

x.year = 1992;

printf("Today's date is %i/%i/%i. \n", x.month,x.day,x.year);

}

sample output

Today's date is 4/28/1992.

162

 prog43.c structures with heterogenous

components

/* program for debt_trade manipulation */

/* let's assume that debts cannot be traded on certain days, i.e. Christmas */

main ()

{

struct debttrade
{

int day;
int month;
int year;
float price;
float par;

} ;
struct debt trade d1;

struct debt_trade d2;

printf("Enter info for first debt trade \n");

printf("day month year \n");

scanf("%i %i %i",&d1.day, &dl.month, &d1.year);

printf("price par \n");

scanf("%f %f”,&d1.price,&d1.par);

printf("Enter info for second debt trade \n");

printf("day month year \n");

scanf("%i %i %i",&d2.day, &d2.month, &d2.year);

printf("price par \n");

scanf("%f %f”,&d2.price,&d l.par);

if (d1.day == 25 && d1.month == 12)

printf("Cannot trade d1 on requested day \n");

if (d2.day == 25 && d2.month == 12)

printf("Cannot trade d2 on requested day \n");

}

163

Exercise 15

/* write a c program that has a structure to keep track

of what time it is now. Structure should be

able to store current hour, minutes, seconds

Display the current time and what time it would be after one second.

Continue to read in times until the time read in is -1 -1 -1

*/

Solution for Exercise 15

/* program to illustrate structures some more */

struct time

{

int hour;

int minutes;

int seconds;

};

main()

{

struct time time_update (struct time);

struct time current time;

struct time next time;

}

printf("Enter the time (hh:mm:ss): ");

scanf("%i: %i: %i",¤t_time.hour,

¤t_time.minutes,¤t_time.seconds);

/* loop until sentinel record is found */

while (current_time.hour != -1 && current jime.minutes !=-1

&& current_time. seconds != -1)

{

printf("You entered %.2i:%.2i:%.2i\n",current_time.hour,
164

current_time. minutes , current_time.seconds);

next_time = time_update (current_time);

printf("Update time is %.2i:%.2i:%.2i\n", next_time.hour,

next_time.minutes, next_time.seconds):

printf("Enter the time (hh:mm:ss): ");

scanf("%i:%i:%i", ¤t_time.hour,

¤t_time.minutes, ¤t_time.seconds);

}

/* function to update the time by one second */

struct time time_update (struct time now)

{

now.seconds++;

if (now.seconds = 60)

{

now. seconds = 0;

now.minutes++;

if (now. minutes == 60)

{

now.minutes = 0;

now.hour++;

if (now. hour == 24)

{

now. hour = 0;

}

}

}

return(now);

 }

165

prog45.c UNIX time.h file

/* program illustrates use of include file and predefined structures in

time.h */

/* introduces concept of pointer to a structure */

#include <time.h>

main ()

{

long timeval;

/* a variable that points to a structure of type

tm */

struct tm * tp;

/* a function, local time, that returns a pointer to a structure of type

tm */

struct tm * localtime();

/* a function, ctime, that returns a pointer to a

character */

extern char * ctime();

/* get time from UNIX system */

/* time is a system call returns the number of

clock ticks since midnight, new year's eve,

1970 */

time (&timeval);

/* ctime takes the tick count and produces a string of characters that can be

displayed with %s format */

printf("GMT time is %s \n", ctime(& timeval));

/* get tm structure */

/* locatime accepts the tick count and returns a pointer to a structure that it

filled up with values that it derived out of the tick count */

166

tp = localtime(&timeval);

/* tp is a pointer to a structure

* /

printf("Structure members

are:\n");

printf("Seconds %d\n",tp->tm_sec);

printf("Minutes %d\n",tp->tm_min);

printf("Hours %d\n",tp->tm_hour);

printf("Day of Month %d\n",tp->tm_mday);

printf("Month of Year %d\n",tp->tm_mon); r zero based off by one */

printf("Year %d\n",tp->tm_year); /* 2 digit year obsolete in 2000... */

printf("Weekday %d\n",tp->tm_wday);

printf("Day of Year %d\n",tp->tm-yday);

printf("Daylight Savings? %d\n",tp->tm_isdst);

}

GMT time is Thu Jun 4 15:59:21

1992

Structure members

are:

Seconds

21

Minutes

59

Hours

15

Day of Month

4

Month of Year

5

Year

92

167

Weekday

4

Day of Year 155

Daylight Savings?

1

Note: the month number is zero based (Jan=O, Dece l l).

Why do you think it is this way?

168

prog46.c Arrays of Structures

/* program to illustrate arrays of structures */

#define NUM_RECS 7

struct xyz { int h; int m; int s; };

main()

{

struct xyz next second (struct xyz now);

struct xyz array_structs[NUM_RECS] =

{ {1l,59,59},

{ 12, 0, 0 },

{ -1, -4, -30 },

{ 1, 1, 60 },

{ 1,29,59},

{ 23,59, 59 },

{19,12,27} };

int i;

struct xyz t1 ,t2;

printf(''\nT1 %i %i %i\n", arrayof structsl[1].h, array ofstructs[l].m,

array _of_structs[1].s);

array_of_structs[l] = next_second (array of' structs[l]);

printf("T2 %i %i %i\n",array_of_structs[1].h,

array_of_structs[l].m, array_of_structs[1].s);

for (i = 0; i < NUM_RECS; i++)

{

printf(''\nTl %i %i %i\n", arrayof structs[i].h, arrayof structs[i].m,

array _of_structs[i].s);

t1 = array_of_structs[i];/* memberwise copy of data */

/* validate the data */

if (t1.h >= 0 && t1.h <= 23 && t1.m >= 0 && t1.m <= 59 &&

t1.s >= 0 && tl.s <= 59)

169

t2 = next second (t1);

printf("Time one second later is %i %i %i\n", t2.h, t2.m, t2.s);

else

printf("INVALID DATA \n");

 }

}

170

/* function to update the xyz by one

second */

struct xyz next_second (struct xyz now)

{

now.s++;

switch (now.s)

{

case 60:

now.s = 0;

now.m++;

switch(now

.m)

{

case 60:

now.m =0;

now.h++;

switch(no

w.h)

{

case 24:

printf("The Start Of A New Day \

n");

now.h =0;

break;

default:

return(now);

}

break;

default:

return(no

w

);

171

}

break;

default:

return(now);

}

return(now); }

172

prog47.c Structures and Arrays

/* shows an array of characters inside a structure defined two ways */

struct piece

{

int point_value;

char name[8];

};

/* global data structure po nested curly braces to initialize sub-structures*/

struct piece po[] =

{

{ 20, "KING" },

{ 10, "QUEEN" },

{ O5, "BISHOP" },

{ 04, "KNIGHT” },

{ 07, "ROOK" },

{ 01, "PAWN" } };

main ()

{

int i;

/* local data structure */

struct piece pi[6] =

{ { 20, { 'K', 'i', 'n', 'g', ' , } },

{ 10, { 'Q', 'u', 'e', 'e', 'n' } },

{ 05, { 'B', 'i', 's', 'h', 'o', 'p' } },

{04, { 'K', 'n', 'i', 'g', 'h', 't' } },

{ 07, { 'R', 'o', 'o', 'k', ' , } },

{ 01, { 'P', 'a', 'w', 'n', ' , } }

} ;

printf("Piece\t Val ue\n");

printtf(“-----\t-----\n"):

for (i = 0; i < 6; i++)

{

173

printf(" %c%c%c%c%c%c\t%3i\n", pi[i].name[0],

pi[i].name[1],pi[i].name[2], pi[i].name[3], pi[i].name[4],

pi[i].name[5], pi[i].point_value);

printf(''\n from po \n");

printf("Piece\tValue\n");

printff("------\t------\n");

for (i = 0; i < 6; i++)

printf("%s\t%3i\n", po[i].name,po[i].point_value);

}

Piece Value

----- -----

King 20

Queen 10

Bishop 5

Knight 4

Rook 7

Pawn 1

from po

Piece Value

----- -----

King 20

Queen 10

Bishop 5

Knight 4

Rook 7

Pawn 1

174

Exercise 16

write a program that reads in an opening

balance

for a checking account, a list of

check numbers

dates and amounts.

print out a nice list of the opening

balance,

the list of transactions, sorted by

check number

and the running balance after each

transaction

use structures and functions

sample input data

5000.00

1 1/23/92 25.00
3 1/24/92 23.00
5 2/2/92 127.00
4 2/1/92 93.00
14 4/15/92 4500.00
2 1/23/92 100.00

Sample Output

Opening Balance $5000

Check Number Transaction Date Amount New Balance

1 1/23/92 25.00 4975.00

2 1/23/92 100.00 4875.00

3 1/24/92 23.00 4852.00

4 2/1/92 93.00 4759.00

5 2/2/92 127.00 4632.00

14 4/15/92 4500.00 132.00

175

Exercise 16.c

#define MAXRECS 20

struct trans

{

int chk;

char date[9];

float amt;

};

void sorttrans (tptr, count)

struct trans * tptr;

int count;

{

int i,j;

struct trans temp;

for (i = 0; i < count - 1; i++)

{

for (j = i + 1; j < count; j++)

{

if (tptr[i].chk > tptr[j].chk)

{

temp = tptr[i];

tptrji] = tptr[j];

tptr[j] = temp;

}

}

}

}

176

main ()
{

struct trans ttrans[MAXRECS];
void sorttrans();
int i,rec,chk;
float bal,newbal;
printf("opening balance please \n");
scanf("%f' ,&bal);

chk = 0; rec = 0;
while (chk !=
-1)
{

printf("Enter check number
\n");
scanf("%i",&chk);
if (chk != -1)

{
ttrans[rec].chk = chk;
printf("Enter date mm/dd/yy and amount (float)
\n");
scanf("%s %f”,&ttrans[rec].date,&ttrans[rec].amt);
rec++;

printf("ORIGINAL TABLE
\n");
for (i = 0; i < rec; i++)
{

printf("%i %s %f\n" ,ttrans[i] .chk,ttrans [i] .date,ttrans[i]
.amt);

}

sorttrans(&ttrans [0] ,rec);
printf("SORTED TABLE
\n");
for (i = 0; i < rec; i++)
{

printf("%i %s %f\n", ttrans[i].chk, ttrans[i].date,
ttrans[i].amt);

}

printf("TABLE with balances \n");
newbal = bal;
for (i = 0; i < rec; i++)

{
newbal = newbal - ttrans[i].amt;
printf("%i %s %f %t\n",ttrans[i].chk, ttrans[i].date,
ttrans[i].amt,newbal);

}
177

}

178

exercise16c.dat

1000.00
1

1/1/9350.00

5

1/2/9325.00

7

1/3/93 10.00

2

1/1/9325.00

3

1/1/9375.00

8

1/4/93 100.00

4

1/1/93 5.00

6

1/2/93 20.00

10

2/28/93100.00

9

2/15/9330.00

-1

179

ORIGINAL TABLE

11/1/9350.000000

5 1/2/93 25.000000

7 1!3/93 10.000000

2 1/1/9325.000000

3 1/1/9375.000000

81/4/93 100.000000

4 1/1/93 5.000000

6 1/2/93 20.000000

10 2/28/93 100.000000

9 2/15/,93 30.000000

SORTED TABLE

1 1/1/93 50.000000

2 1/1/93 25.000000

3 1/1/93 75.000000

41/1/935.000000

5 1/2/93 25.000000

6 1/2/93 20.000000

7 1/3/93 10.000000

8 1/4/93 100.000000

9 2/15/93 30.000000

10 2/28/93 100.000000

TABLE with balances
1 1/1/93 50.000000 950.000000
21/1/9325.000000 925.000000
3 1/1/93 75.000000 850.000000
41/1/935.000000 845.000000
5 1/2/93 25.000000 820.000000
6 1/2/93 20.000000 800.000000
7 1/3/93 10.000000 790.000000
8 1/4/93 100.000000 690.000000
9 2/15/93 30.000000 660.000000
10 2/28/93 100.000000 560.000000

prog48.c String Processing strlen
180

/* function to count the number of characters in a string */
/* also the UNIX function that does the same thing */
#include <string.h>

/* returns a count of how many characters are in string */
/* count does not include null terminator */
/* accepts a null terminated string */
int our_string_length (char * input string)
{

int count = 0;
/* note the null terminator is binary zero * /
while (input_string[count])

count++;
return(count);

}

main()
{

int our_string_length (char * string);
charwordl[] = {'T', 'e', 'r', 'r', 'i', 'l', 'l', "\0”};
char word2[] = { 'O', ‘w', 'e', 'n', 's', '\0' };
printf("USING OUR ROUTINE WE DISCOVER\n");
printf("length of %s is %i \n",wordl, our_string_length(wordl));
printf("length of %s is %i \n\n",word2,our_string_length(word2));
printf("USING BUILT IN ROlITINE WE DISCOVER\n");
printf("length of %s is %i \n",wordl,strlen(word1));
printf("length of %s is %i \n",word2,strlen(word2));

}

USING OUR ROUTINE WE DISCOVER
length of Terrill is 7
length of Owens is 5
USING BUILT IN ROUTINE WE DISCOVER
length of Terrill is 7
length of Owens is 5

181

prog49.c String Processing strcat

/* program to illustrate string concatenation */

/* uses pointers * /

/* uses built in functions * /

#include <string.h>

#define MAX_SIZE 100

char s1[] = {"Terrill"};

char s2[] = {"Owens"};

char sa[] = {"Oingo " } ;

char sb[] = {"Boingo "};

char s3[MAX_SIZE];

char s4[MAX_SlZE];

char stringa[] = {"abcde "};

/* jtcat concatenates a and b into c, replace c if contains data */

void jtcat(char* a, char* b, char* c)

{

/* copy all of a into c, stop before copy null terminator */

while (*a != '\0')

{

*c++ = *a++;

}

/* copy all of b onto end of c * /

while (*b)

{

*c++ = *b++;

}

/* remember to tack null terminator onto end of c */

*c = '\0';

}

182

main ()

{

void jtcat(char*, char*, char*); /* jts concatenation routine */

/* call strcat, send s1 and s2

function sticks s2 onto back of s1, returns s1 */

strcat(s1, s2);

printf(“%s\n”,s1);

/* call strcat, send s3 and s1 */

/* function sticks s1 onto end of s3, returns s3 */

strcat(s3,stringa);

strcat(s3,stringa);

strcat(s3,stringa);

strcat(s3,stringa);

strcat(s3,stringa);

strcat(s3,stringa);

printf(“%s”,s3);

printf(“\n”);

/* now use jtcat routine */

printf(“%s\n”,sa);

printf(“%s\n”,sb);

jtcat(sa,sb,s4);

printf(“%s\n\n”,s4);

}

sample output

Terrill Owens

abcde abcde abcde abcde abcde abcde

Oingo

Boingo

Oingo Boingo

183

prog50.c String Processing strcmp

#include <string.h>

int jteq(char * s1, char * s2)

{

while (*s1++ == *s2++)

{

if (*s1 == ‘\0’ && *s2 == ‘\0’)

return(0); /* 0 is code for “equal” in my routine */

}

return (1); /* 1 is code for “not equal” in my routine */

}

main ()

{

int jteq(char*, char*);

char stra[] = "Terrill Owens";

char strb[] = "Terrill";

int equalreturn;

char * strings[] =

{ "The Same", "Not The Same" };

int cmp_val1, cmp_val2, cmp_val3;

equal_return = jteq(stra,stra);

printf("%s and \n%s are %s \n\n",stra,stra,strings[equal_return]);

equal_return = jteq(stra,strb);

printf("%s and \n%s are %s \n\n",stra,strb,strings[equal_return]);

cmp_vall = strcmp(stra,stra);

printf("cmp_val1 => %i \n",cmp_val1);

cmp_val2 = strcmp(stra,strb);

printf("cmp_va12 => %i \n",cmp_va12);

cmp_val3 = strcmp(strb,stra);

printf("cmp_val3 => %i \n",cmp_val3);

 }

184

Exercise 17

Write a program that will input a list of words until the word quit is entered.

Create one long string from all these words, seperating them in the created

string by a dollar sign. Do not allow the word foobar to be entered into your

string. (ignore it if it is entered).

Print out a table which includes each of the words input and its length.

Print out the final created string.

Hint: Use strcat, strlen, and strcmp

185

Solution For Exercise 17

#include <string.h>

main ()

{

int x;

char s[20];

char d[1000];

printf("Enter word\n");

scanf("%s" ,s);

x = strcmp(s,"quit");

while (x != 0)/* strcmp returns FALSE if a match */

{

if (strcmp(s,"foobar"))

{

strcat(d,s);

strcat(d,"$");

x = strlen(s);

printf("%s length => %i \n",s,x);

}

else

{

printf("Cannot insert that word\n");

}

printf("Enter word\n");

scanf("%s",s);

x = strcmp(s,"quit");

}

printf("Final word is %s\n",d);

}

sttrcmp("abc","abc") would return 0 because they differ in 0 locations

strcmp("abc","xyz") would return non-zero

186

prog52.c getchar and gets

/* as an exercise, remove the next line and compile and
run */

#include <stdio.h>
main ()
{

/* getchar returns one character from stdin as an
integer*/

/* gets returns one newline terminated line from
stdin */

/* the line is turned into a null terminated string with ws preserved */
/* if the gets fails, it returns NULL, otherwise it returns the address that you

passed it */
int
i =
0;
int
c;
char * ptr;
char input_line[8l];
printf("Please enter string then press return \n");
do
{

c = getchar(): /* a function that returns one character */
input_line[i] = (char)c;
i++;

}
while (c != '\n');

input_line[i - 1] = ‘\0’; /* null terminate the line */
printf("You entered %s\n" ,input_line);
printf("\nPlease enter string then press return \n");

pointer to string returned pointer to desired location to put string

ptr = gets(&input_line[0]);
/* ptr = gets(inputIine): THIS ALSO WORKS, WHY?? */
if (ptr == NULL)

printf("gets failed \n");
else

printf("gets succeeded \n");

printf("You entered %s\n",input_Iine);
}

187

prog53.c
#define FALSE 0

#define TRUE 1

#include <ctype.h>

HAVE A LOOK AT

ctype.h

LOOK at the macro

definitions

You'll find these in any C reference under ISxxxxx ususlly grouped together, or look

up ctype.h

main ()

{

/* program to input characters and report whether they are alphabetic or not */

ch

ar

c =

'x';

ch

ar

cr;

while (

c != 'q'

)

{

printf(''\nEnter a character, I'll tell you if it's

alphabetic\n");

scanf("%c",&c); /* get the character */

scanf("%c",&cr); /* soak in the carriage

return */

if (isalpha(c))

printf("%c is alp

188

habetic\n",c);

else

printf("%c is not

alphabetic\n",c);

printf(''\n'');

}

}

189

String Functions

#include

<string.h

>

char * strcat(sl,s2) s2 stuck on end of s1, returns pointer to s1

char * strchr(s,c) search s for 1st occurence of c, return pointer to c or

NULL

int strcmp(sl,s2) 1 < 0 s1 < s2

0 s1 == s2

>0 s1 > s2

char * strcpy(sl,s2) s2 copied over s1, returns pointer to s1

size_t strlen(sl) find length of s1

char * strncat(s 1 ,s2,n) copy s2 to end of s1 until null encountered or n chars

copied

int strncmp(sl,s2,n) compare s1 to s2 over n characters

char * strncpy(sl,s2,n) copy s2 to s1 for at most n characters, may null terminate

before n

char * strrchr(s,c) search s for last occurrence of c, returns pointer to c or

NULL

1. strcmp looks something like:

signed strcmp(const char *a.const char

*b)

{

while(*a=*b)

{

if(*a=='\O')

return 0;

a

+

+

190

;

b

+

+

;

}

retu

rn

*a-

*b;

}

191

Character Functions

Most compilers actually implement these as macros not

functions.

#include <ctype.h>

0 equates to no, false

1 equates to yes, true

isalnum(c) is character c alphanumeric?

isalpha(c) is character c alphabetic?

iscntrl(c) is character c a control character?

isdigit(c) is character c a digit?

islower(c) is character c lower case?

isprint(c) is character c a printable character

ispunct(c) is character c a punctuation character

isupper(c) is character c upper case?

isspace(c) is character c a white space character?

tolower(c) convert character c to lower case

toupper(c) convert character c to upper case

Large Numbers as Characters Exercise

Write a C program to:

read in, as character strings, two arbitrarily large numbers (ie: 37 digits)

add them together

display the result

192

#include <stdio.h>

int

jconv(ch

ar);

char

jrev(int);

main()

{

char num1[20], num2[20], num3

[21];

int n1 [20], n2 [20] ;

int n3 [21] ;

int len1, len2,

lenmax;

int shuffle_dist,

i;

int ans, carry;

for (i = 0; i < 20; i++)

{

num1 [i] = 0x00;

num2 [i] = 0x00;

num3 [i] = 0x00;

}

printf("Enter first number\n");

scanf("%s",&num1[0]) ;

printf("Enter second

number\n");

scanf("%s",&num2[0]) ;

printf ("num1 char is %s \n", numl

) ;

193

printf ("num2 char is %s \n ",

num2) ;

/* find out how long the string is */

len1 = strlen(num1);

len2 = strlen(num2);

/* find out which one is longer */

if (len1 == len2)

{

/* you are okay, no shuffling required */

/* just reverse the strings */

printf(“Strings are same length\n");

lenmax = len1;

}

else

{

if (len1 < len2)

{

printf("len1 < len2

\n");

lenmax = len2;

printf("lenmax is %i \n",lenmax);

shuffle_dist = len2 - len1;

printf (“shuffle_dist is %i \n",

shuffle_dist);

/* need to shuffle lenl and pad with O's */

for (i = len1; i >= 0 ; i--)

num1[i + shuffle_dist] = num1[i]

for (l = 0; i < shuffle_dist; i++)

num1 [i] = ‘0’;

}

else

194

{

printf("len1 > len2 \n");

lenmax = len1;

printf("lenmax is %i \n",lenmax);

/* need to shuffle len2 and pad with O's */

shuffle_dist = len1 - len2;

/* need to shuffle len1 and pad with O's */

for (i = len2; i >= 0 ; i--)

num2[i + shuffle dist] = num2[i];

for (i = 0; i < shuffle_dist; i++)

num2[i] = '0'; -

}

}

/*print after padding */

printf("after padding num1 is %s \n",num1);

printf("after padding num2 is %s \n",num2);

/* now convert from character to integer */

for (i = 0; i < lenmax; i++)

{

n1[i] = jconv(num1[i]);

n2[i] = jconv(num2[i]);

}

printf("after converting to array of integers \n")

for (i = 0; i < lenmax; i++)

{

printf(“%1i",n1[i]) ;

}

printf("\n") ;

for (i = 0; i < lenmax; i++)

195

{

printf (“%1i" ,n2[i]);

}

/* now start adding from the back to the front */
carry = 0;
for (i = lenmax - 1; i >= 0; i--)
{

ans = n2[i] + n1[i] + carry;
printf("ans is %i \n",ans);
carry = ans / 10;
n3 [i + 1] = ans % 10;

}
n3 [0] = carry;

196

printf("\n n3 array is \n");

for (i = 0; i <= lenmax; i++)

{

printf (“%1i" ,n3 [i]);

}

/* now convert back to character */

for (i = 0; i <= lenmax; i++)

num3[i] = jrev(n3[i]);

num3 [lenmax + 1] = '\0';

printf("Final string is %s \n",num3);

}

197

int jconv(char c)

{

switch (c)

{

case ‘0’:

return 0;

break;

case ‘1’:

return 1;

break;

case ‘2’:

return 2;

break;

case ‘3’:

return 3;

break;

case ‘4’:

return 4;

break;

case ‘5’:

return 5;

break;

case ‘6’:

return 6;

break;

case ‘7’:

return 7;

break;

case ‘8’:

return 8;

break;

case ‘9’:

return 9;

198

break;

}

}

char jrev(int i)

{

switch (i)
{

case 0:
return ‘0’;
break;

case 1:
return ‘1’;
break;

case 2:
return ‘2’;
break;

case 3:
return ‘3’;
break;

case 4:
return ‘4’;
break;

case 5:
return ‘5’;
break;

case 6:
return ‘6’;
break;

case 7:
return ‘7’;
break;

case 8:
return ‘8’;
break;

case 9:
return ‘9’;
break;

}
}

199

Solution to Characters as Large Integers Exercise

/* charlarge.c */

/* program to add together large character strings representing positive

integers */

#include <string.h>

#define MAXDIGITS 20

char digits[] = {

"0123456789"}; main ()

{

char sl[MAXDIGITS]; int lenl; /* first string and its length */

char s2[MAXDIGITS]; int len2; /* second string and its length */

char sresult[MAXDIGITS]; /* result string */

char dt1[2]; char dt2[2]; /* temporary strings for each digit */

int dl, d2,dsum; /* temporary digits for integers */

int i,maxlen,jpos;

int carry_flag = 0;

dtl[l] = OxOO; /* null terminate the temporary string s */

dt2[1] = OxOO;

/* input the two strings to add together */

printf("Enter first string \n");

scanf("%s",s1);

len1 = strlen(s1);

#ifdefDEBUG

printf("There are %i digits in %s\n",lenl,sl);

#endif

printf("Enter second string \n");

scanf("%s" ,s2);

len2 = strlen(s2);

#ifdef DEBUG

printf("There are %i digits in %s\n",len2,s2);

200

#endif

/* if the first string is longer, shuffle the second string into a field the

same size as the first string */

if (lenl > len2)

{

#ifdef DEBUG

printf("Shuffling s2\n");

#endif

/* set maxlen and shuffle other number over */

maxlen = len1; /* pointer the last position in new s2, the

null */

jpos = len2; /* pointer to last position in s2, the null

* /

/* start i at the null, move it back to zeroeth

position */

for (i = maxlen; i >= 0; i--)

{

if (jpos >= 0) /* if orig char move to new */

{

s2[i] = s2[jpos];

jpos--;

}

else /* otherwise put in a zero */

s2[i] = '0';

}

}

/* if the second string is longer, shuffle the first string into a field the

same size as the second string */

else if (len2 > len 1)

{

201

#ifdef DEBUG

printf("Shuffling s 1\n ");

#endif

/* set maxlen and shuffle other number over */

maxlen = len2; jpos = len1;

for (i = maxlen; i >= 0; i--)

{

if (jpos >= 0)

{

sl[i] = s l[jpos];

jpos--;

}

else

s1[i] = '0';

}

}

e

lse {

#ifdef

DEBU

G

printf("No need to shuffle \n");

#endif

maxlen = len 1; }

#ifdef DEBUG

printf("s 1 now %s\n" ,s

1);

printf("s2 now %s\n"

,s2);

#endif

sresult[maxlen + 1] = OxOO; /* put in the terminating null for sresult */

sresult[0] = ‘ ‘; /* assume a space in first position */

202

for (i = maxlen - 1; i >= 0 ; i--)

{

dt1[0] = sl[i]; d1 = atoi(dtl); /* convert char to string, string to int */

dt2[0] = s2[i]; d2 = atoi(dt2); /* convert char to string, string to int */

dsum = d1 + d2 + carry_flag; /* compute resulting int */

/* determine if a carry event

occurred */

if (dsum >= 10)

{

dsum = dsum - 10;

carry flag = 1;

else { carry flag = 0; }

#ifdef DEBUG

printf("d 1 is %i ", d1);

printf("d2 is %i\n",d2);

#endif

sresult[i + 1] = digits[dsum];/* convert int to char via array */

}

if (carry flag == 1)

sresult[0] = '1'; /* if the last addition produced a carry

put the 1 in the first position */

printf("sresult is %s\n",sresult);

} /* end main */

Exercise 18

/* modify prog55.c so that it will allow the user to add new stocks to the stock list */

/* modify prog55.c so that the user can search for stocks by number */

/* allow them to enter the number and retrieve the name and ticker symbol */

203

204

prog55.c Structures and

Strings

#define STRING_SIZE 20

#define TICKER_SIZE 5

#define MAX_ENTRIES 20

#include

<string.h

>

struct

stock_en

try

{

int stock_number;

char stock_name[STRING

_SIZE];

char

ticker_symbol[TICKER_S

IZE];

} ;

struct stock_entry

stock_list[MAX_ENTRIES] =

{

{ 0, "IBM", "IBM" },

{ 1, "General

Motors", "GM" },

{ 2, "General

Electric","GE"},

{ 3, "Terrill Owens",

"MER" },

{ 4, "Ford","F" }

};
205

/* function to look for a string that matches the input string Search the array of

structures for the

string. Return index in array if found Return -1 if not found. */

int find_stock(s, w, count)

struct stock_entry* s;

char * w;

int count;

{

int i, result;

for (i = 0; i <

count; i++)

{

result =

strcmp(s(i].stock_name,

w);

if (result == 0)

return(i); /* found it */

result =

strcmp(s[i].ticker_symbol,w);

if (result == 0)

return(i); /* found it */

}

return(-1);

}

 main ()

{

char

search_word[STRING_SIZE]

;

int idx;

int find_stock();

printf("\n\nEnter stock name or ticker symbol to search for (quit) to

206

quit\n");

#ifdef SCANF

scanf("%STRING _SIZEs", search_word);

#else

gets (search_ word);

#endif

printf("You entered %s \

1",search_word);

/* strcmp returns 0 on a match

*/

while (strcmp(search_

word,"quit") {

idx = find_stock(stock_list,

search_word, 5);

if (idx == -1)

printf("%s not found in stock_list \n",search_ word);

else

printf("%i %s % s\n ", stock_list[idx].stock_number,

stock_list[idx].stock_name, stock_list[idx].ticker

symbol):

printf(''\n\nEnter stock name or ticker symbol to search for (quit) to

quit\n");

#ifdef SCANF

scanf(" %STRING _SIZEs " ,search_word);

#else

gets (search_ word);

#endif

printf("You entered %s \t" ,search_word);

}

printf(''\

n\n'');

} /* end main */

207

Enter stock name or ticker symbol to search for (quit) to quit

ibm

You entered ibm ibm not found in stock_list

Enter stock name or ticker symbol to search for (quit) to quit

IBM

You entered IBM 0 IBM IBM

Enter stock name or ticker symbol to search for (quit) to quit

Terrill

You entered Terrill Terrill not found in stock_list

Enter stock name or ticker symbol to search for (quit) to quit

Terrill Owens

You entered Terrill Owens Terrill Owens not found in stock_list

Enter stock name or ticker symbol to search for (quit) to quit

quit

You entered quit

acc prog55.c /* to not have debug prints */

ace -DSCANF prog55.c /* to have debug prints */

208

prog57.c Pointers

/* Program to illustrate pointers */

main ()

{

int i;

int j;

int * int pointer; /* read as intpointer is a pointer to an integer * /

/* int_pointer gets address of i * /

/* intpointer now points at memory location that variable */

/* i is stored in */

int_pointer = &i;

/* assign 5 to the location that int pointer is pointing to */

/* this effectively assigns 5 to i */

/* and is equivalent to i = 5; */

*int_pointer = 5;

/* assign to j the value pointed to by int pointer */

/* this is equivalent to j = i; */

j = *int_pointer;

printf("i = %i, j = %i\n",i,j);

}

209

prog58.c Pointers

/* Program to illustrate pointers */
main()
{

/* declare a character variable c, assign initial value! */
charc = 'Q';
char d = 'x';
/* declare a character pointer char_pointer */
/* assign it the address of the character variable c */
/* char_pointer now points to c */
char * char_pointer = &c;
char * dptr = &d;
char ** ddptr = &dptr;
char *** dddptr = &ddptr;

/*printf("%c %c\n",c, *char_pointer);*/
printf("%c %c %c %c \n",d,*dptr,**ddptr,***dddptr);
printf("address of d %p value of d %c \n",&d,d);
printf("address of dptr %p value of dptr %x \n",&dptr,dptr);
printf("address of ddptr %p value of ddptr %x \n",&ddptr,ddptr);
printf("address of dddptr %p value of dddptr %x \n",&dddptr,dddptr);

/* assign a new value to c using traditional method */
c = ‘/’;
printf("%c %c\n",c, *char_pointer);

/* assign a new value to c using pointer method */
*char _pointer = ‘(‘;
printf("%c %c\n",c, *char_pointer);

/* sample output */
xxxx
address of d f7fffcge value of d x
address of dptr f7fffc94 value of dptr f7fffcge
address of ddptr f7fffc90 value of ddptr f7fffc94
address of dddptr f7fffc8c value of dddptr f7fffc90
II
((

210

Pointers

char c = 'Q'; Q addr

102

char d = 'x'; x addr

103

char * dptr = &d;· 103 addr

104

char * * ddptr = & dptr; 104 addr

108

char * * * dddptr = & ddptr; 108 addr

112

d=>x &d => 103

dptr => 103 *dptr => x &dptr => 104

ddptr => 104 *ddptr => 103

**ddptr => x

&ddptr => 108

dddptr=> 108 *dddptr => 104

**ddptr => 103

***dddptr => x

&dddptr => 112

211

prog59.c Pointers to Structures

/* program for debt trade manipulation */

/* let's assume that they cannot be traded on certain days, i.e.

Christmas */

/* let's refer to the structures via pointers */

main () {

int i;

struct debt trade {

int day;

int month;

int year;

float price;

float par; };

struct debt_trade debts[5];

struct debt_trade * dtptr;

dtptr = &debts[0]; /* establish pointer to first element of array */

for (i = 0; i < 5; i++)

{

scanf("%i %i %i %f %f',&debts[i].day, &debts[i].month,

&debts[i].year, &debts[i].price,&debts[i].par);

/* see if date is any good using array

notation */

if (debts[i].day = 25 && debts[i].month ==

12)

printf("%f %f CANNOT TRADE ON %i/%i/%i\n",

debts[i].price,

debts[i] .par, debts[i] .day,debts[i].month,debts[i)

.year);

else

printf("%f %f okay on %i/%i/%i", debts[i].price, debts[i].par,

debts[i] .day, debts[i].month, debts[i]. year);

212

/* see if date is any good using pointer notation */

if (dtptr->day = 25 && dtptr->month = 12)

printf("%f %f CANNOT TRADE ON %i/%i/%i\n", debtsj

il.price,

debts[i] .par, debts[i] .day,debts[i].month,debts[i). year);

/* see if date is any good using pointer and array notation */

if (dtptr->day == 25 && debts[i].month == 12)

printf("%f %f CANNOT TRADE ON %i/%i/%i\n",

debts[i].price,

debts[i].par, debts[i].day,debts[i].month, debts[i].year):

/* move the pointer ahead to next

entry */

dtptr++;

} /* end for */

213

prog59.dat

1 1 1992 1.0 1.0

1 1 1993 123.5 1.07

2 28 1993 34.5 1.098

25 12 1980 1.0 1.98

23 111979 100.532.73

Sample Run

a.out < prog59.dat

1.000000 1.000000 okay on 1/1/1992

123.500000 1.070000 okay on 1/1/1993

34.500000 1.098000 okay on 2/28/1993

1.000000 1.980000 CANNOT TRADE ON 25/12/1980

1.000000 1.980000 CANNOT TRADE ON 25/12/1980

1.000000 1.980000 CANNOT TRADE ON 25/12/1980

100.5299992.730000 okay on 23/11/1979

214

A better linked list example

struct node

{

int val;

int valsq;
struct node * next;

};

#include <stdio.h>
void main()
{

struct node * head=NULL;
int v;

printf("enter a positive val or -1 to end \n");
scanf("%i",&v);
while(v! = -1)

{
addnode(v, &head);
printlist(head);
printf("next... ");
scanf("%i",&v);

}
/* list after loop */
printlist(head);

}

void addnode(int in, struct node **h)
{

struct node *p;
p=*h;

/* go through list till find value or reach end */
while(p!=NULL && p->val! = in)

p=p->next;

/* if end was reached add_item at head of list */
if(p == NULL)

{
/* allocate new node and copy data */
p = (struct node*) malloc(sizeof(struct node));
p->val=in;
p->valsq = in * in;

/* make this node point at top item in list */
p->next=*h;

215

/* reset head to be this new node */
*h=p;

}
}

void printlist(struct node *h)
{

/* repeat while pointer is not null */
while(h)
{
/* print value at this node */
printf(" %i\t%i\n" ,h ->val,h ->valsq);

/* print next node * I
h=h->next;

}
}

216

prog60.c Using Pointers in a Linked List

/* also demonstrates dynamic memory allocation with malloc */

/* we need to read in numbers, don't know how many */

#include <stdlib.h>

#include <stdio.h>

main ()

{

/* a linked list entry structure definition */

struct lle

{

int value; /* value in list */

int squared value; /* value in list */

struct lle *next; /* pointer to next entry */

};

struct lle first_element; /* first entry in list */

struct lle* next_element; /* pointer to any entry in list */

int val;

printf("size of lle is %i\n",sizeof(first_element));

printf("Enter value to square and store (-1) to stop\n");

scanf("%i",&val);

/* set up pointer to already established element */

next_element = &first_element;

/* enter value to

square and store */

while (val!= -1)

{

next_element->value = val;

next_element->squared_ value = val * val;

/* allocate memory for another structure */

/* returns a pointer to the memory allocated, pointer will be of

217

type (char *) */

next_element->next = (struct lle*)

malloc(sizeof(first_element)):

printf("Enter value to square and store

(-1) to stop\n");

scanf("%i",&val);

if(val !=-1)

next_element = next_element-

>next;

else

next_element->next = NULL;

}

next_element =

&first_element;

while (next element != NULL)

{

/* print out values from this linked list element * /

printf("value = %i squared %i\n",

next_element->value, next_element->squared , value);

printf(''\t This record stored at %p\n",next_element);

printf(''\t This record points to record at %p\n\n",next_element->next);

/* advance pointer to next element in linked list */

next_element = next_element->next;

}

 }

218

valref.c Pointers and Functions

/* demonstrate that if a function receives the address of an item it

can

update the item. This is roughly equivalent to call by reference,

but it still

is call by value, the value passed is the address of another item */

#ifdef ANSI

void refl(int* x) /* ansi function header */

#else

void ref1(x) /* K & R function header */

int* x;

#endif

{

*x = *x + 1; /* add one to value stored at address stored in x

*/

printf("In ref1 x = %i \n",*x); /* print it out */

return;

}

main ()

{

int i = 5;

printf("In main i = %i \n",i);

ref1(&i); /* pass address of i to ref1 */

printf("In main i = %i \n",i); /* notice that ref1 changed i */

}

219

Exercise 19

/* FOR THOSE COMFORTABLE WITH THE LINKED LIST DATA STRUCTURE

*/

/* write a C program to allow

1: User to input elements into a linked list

2: User to print linked list forwards

3: User to add elements to end of linked list

4: User to delete any element from list (if it is present) by searching

for the first

occurrance of the value and deleting that item.

implement as you deem fit (double linked

list)

*/

/* FOR THOSE WHO WOULD PREFER TO DO SOMETHING

DIFFERENT */

/*

Write A C Program that will do the

following

1) Input text up to 1,024 characters

into an array

2) Create a structure that stores

of characters

of white space seperated words

longest word

shortest word

3) Allow user to search for any string in the array

if found, allow them to

change it

to some other string without

damaging

the characters around the

point of

220

editing and without

producing any

new whitespace

221

USEFUL FUNCTIONS

iswspace(c)

strstr(s 1 ,s2)

/* ex19.c */

/* solution to exercise 19 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <malloc.h>

struct lle

{

char value [10] ;

struct lle * p;

};

/* functions will be given pointer to head of list */

/* functions will return pointer to head of list */

struct lle * add_item(struct lle *);

struct lle * delete_item(struct lle *);

/* function accepts pointer to head of list and returns nothing */

void print_list (struct lle *);

main()

{

int choice;

struct lle * hptr = NULL;

for (; ;)

{

printf("\nDo you want to \n");

printf("l add an item\n");

printf("2 delete an item\n");
222

printf("3 print list\n");

printf ("4 quit\n”);

scanf("%i",&choice) ;

switch(choice)

{

case 1:

hptr = add_item (hptr) ;

break;

case 2:

hptr = delete_item(hptr);

break;

case 3:

print_list (hptr) ;

break;

case 4:

printf ("Good-bye\n") ;

exit(l) ;

default:

printf ("Good-bye\n") ;

exi t (-1) ;

}

} /* end forever loop */

} /* end main */

struct lle * add_item(struct lle * ptr)

{

char

word[50]

;

struct lle *

223

tmp;

struct lle * original_head = ptr;

printf("Enter string to enter\n");

scanf (“%s”, &word [0]) ;

while (strlen(word) > 20)

{

printf("Word too long, 20 chars max\n");

scanf(“%s",&word[0]) ;

}

/* is the list currently empty? */

if (ptr == NULL)

{

/* we are at the head of the list */

/* get more memory */

tmp = (struct lle *) malloc sizeof(struct lle));

/* make sure the malloc worked */

if (tmp == NULL)

{

printf("malloc

failed\n");

exi t (- 2) ;

}

/* assign value and pointer */

strcpy(tmp->value,word) ;

tmp->p = NULL;

/* return new head of list */

return (tmp);

}

224

/* traverse the list */

while (ptr->p !=

NULL)

{

ptr = ptr->p;

}

/* at this point in time, ptr is at the end of the list */

/* get more memory */

tmp = (struct lle *) malloc (sizeof(struct lle));

/* make sure the malloc worked */

if (tmp == NULL)

{

printf("malloc

failed\n");

exi t (- 2) ;

}

/* add newly created tail item to list */

ptr->p = tmp;

strcpy(tmp->value,word) ;

tmp->p = NULL;

return (original_head) ;

}

struct lle * delete_item(struct lle * ptr)

{

char word[50];

struct lle * pl;

struct lle * tmp;

/* is there anything In the list? */

if (ptr == NULL)

225

{

printf(“There are no items in list\n");

/* return that list is still empty */

return (NULL) ;

}

printf("Enter string to delete\n");

scanf (“%s”, &word [0]) ;

while (strlen(word) > 20)

{

printf (“Word too long, 20 chars max\n”) ;

scanf(“%s",&word[0]) ;

}

/* is it at the head of the list? */

if strcmp(ptr->value,word) == 0)

{

/* it is at the head of the list */

/* is this a singleton? */

if (ptr->p == NULL)

{

/* give the memory back */

free (ptr) ;

/* list is now empty */

return (NULL) ;

}

else

{

/* return the pointer field of the head as the new head */

tmp = ptr->p;

free (ptr) ;

return (tmp) ;

/* traverse list to find item */

226

tmp = ptr; /* save the head of the list */

pl = ptr; /* save the current position */

ptr = ptr->p; /* get the next position */

while (ptr != NULL)

{

if (strcmp(ptr->value,word) == 0)

{

/* delete the item */

pl->p = ptr->p;

free (ptr) ; /* give the memory back */

return (tmp) ; /* return original pointer */

}

ptr = ptr->p;

p1 = p1->p;

}

/* if we got here then the word was not in the list */

printf(“Item not in list \n”);

return(tmp); /* return original head *

}

void print_list (struct lle * ptr)

{

if (ptr == NULL)

{

printf("list is empty\n");

return;

}

/* traverse the list printing things as you go */

while (ptr != NULL)

{

printf ("%s ", ptr->value);

ptr = ptr->p;

227

}

return;

}

228

prog76.c getchar & putchar

/* program to read and echo characters until * /

/* end of file (EOF) is encountered */

/* two ways to run this program */

/* 1: run it from the terminal prog76 */

/* type in your input, press control d for EOF */

/* 2: run it from the terminal prog76 < input file */

/* provide the name of an input file and redirect * /

/* the input to come from that file using UNIX stdin */

/* when EOF is encountered, program will terminate */

/* you don't need to put any special EOF character

in the data file, system will figure it out */

#include <stdio.h>

main ()

{

/* even though we are reading in characters */

/* we need c to be declared as an int because getchar returns an int * /

int c;

c = getchar();

while (c != EOF)

{

/* echo the input character to stdout */

putchar(c);

/* get the next char from stdin */

c = getchar();

}

}

229

prog77.c fopen, fprintf, fclose, getc, putc

/* program to copy one file to another * /

/* and that cleans up after itself, not counting on the

os */

#define FILENAME_SIZE 40

#include <stdio.h>

main ()

{

char source[FILENAME_SIZE], dest[FILENAME_SIZE];

FILE *in, *out;

int c;

int char_count = 0;

printf("Enter source file name:");

scanf("%39s", source);

printf(t'You entered %s as file to copy from\n",source);

in = fopen(source,"r");

if (in == NULL)

{

printf("Cannot open %s \n",source);

exit(-1);

}

printf("Enter dest filename: ");

scanf("%39s", dest);

printf("You entered %s as file to create\n",dest);

out = fopen(dest,"w");

if (out == NULL)

{

printf("Cannot open %s \n",dest);

fclose(in);

exit(-2);

230

}

/* write the name of the source file as first line in output file */

fprintf(out,"SOURCE FILE NAME WAS %s\n",source);

/* write the name of the source file as first line in output file */

fprintf(out,"Dest FILE NAME WAS %s\n",dest);

c = getc(in);

while (c != EOF)

{

char_count++;

putc(c,out);

c = getc(in);

}

fprintf(out,"SOURCE FILE HAD %i CHARACTERS\n",char_count);
printf("File copy complete \n");

/* close the files explicitly */
fclose(in);
fclose(out);

}

Enter name of file to be copied: prog74.dat
You entered prog74.dat as file to copy from
Enter name of output file: out.1
You entered out.l as file to create
File copy complete

cat out.l
SOURCE FILE NAME WAS prog74.dat
Dest FILE NAME WAS out.1
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
SOURCE FILE HAD 320 CHARACTERS

231

uitp.c

This program shows file i/o and string processing

The input and output files are shown below

If you can follow this code, you have mastered the material to this point

Open a flat data file, create two seperate files

one flat file for further fixed sized

processing

one space delimited file for numeric

processing

#include <stdio.h>

#include <stdlib.h>

main()

{

int ia, il , i2;

double xbid, xoffer;

char type[3]; /* three character field for type of transaction */

char temp[20]; /* 20 character field for temporary string operations */

/* read directly into here using fixed sizes from file */

struct {

char

transact[l];

char

cusip[8];

char date[8];

char bid[10];

char offer[10];

char mlnumber[5];

char mlsymbol[6];

char name[30];

char misc[8];

char cr;

232

} rec;

FILE *fp l, *fp2, *fp3; /* file pointers for reading from and writing to

*/

int x;

/* START OF EXECUTABLE CODE */

il = 0; i2 = 0;

/* open the price.file for reading */

if ((fpl = fopen("price.file","r")) = NULL)

{

printf ("CAN NOT open input file (price.file) \n");

exit(100);

}

/* open the pricedadd.input file for writing, if it exists overwrite it */

if ((fp2 = fopen("priceadd.input","w")) == NULL) {

printf ("CAN NOT open output file

(priceadd.input) \n");

exit(200); }

/* open the priceupd.input file for writing, if it exists

overwrite it */

if ((fp3 = fopen("priceupd.input","w")) == NULL){

printf ("CAN NOT open output file (priceupd.input) \n");

exit(300); }

/* read in 86 data characters and one carriage return from file */

/* pointer to destination, size of each thing to be read (in bytes)

count of things to be read, file pointer of file to be read from * /

x = fread(char *)&rec,1,87,fpl);

/* while not end of file */

while(!feof(fpl))

233

{

rec.cr = '\0'; /* convert the carriage return to a null */

printf("%s \n",&rec); /* print out the whole record */

printf("%c \n" ,rec. transact[0]): /* stdout is standard output stream */

fwrite(&rec.cusip[0], 1,8,stdout); /* print out each field, one per line */

putc('\n' ,stdout); /* add a lf to the output stream */

fwrite(&rec.date[0], 1,8,stdout);

putc('\n' ,stdout);

fwrite(&rec.bid[0],l, 10,stdout);

putc('\n' ,stdout);

fwrite(&rec.offer[0], 1, 10,stdout);

putc('\n' ,stdout);

fwrite(&rec.mlnumber[0],1,5,stdout);

putc('\n' ,stdout);

fwrite(&rec.mlsymbol[0],1,6,stdout);

putc('\n' ,stdout);

fwrite(&rec.name[0],1,30,stdout);

putc('\n' .stdout);

putc('\n' ,stdout);

if (rec.transact[0] == 'A')

{

i1 = i1 + 1; /* add one to i1 */

type[0] = rec.mlsymbol[0]; /*transfer mlsymbol to type */

type[1] = rec.mlsymbol[l];

type[2] = rec.mlsymbo1[2];

/* builld up the output file for adds, no delimiters */

fwrite(&rec.cusip[0], 1 ,8,fp2);

fwrite(&rec.date[0],1,8,fp2);

fwrite(&rec.date[0],1,8,fp2);

fwrite(&rec.mlnumber[0], 1,5,fp2);

fwrite(&rec.mlsymbol[0],1,6,fp2);

234

fwrite(&type[0],1,3,fp2);

fwrite(&rec.name[0],1,30,fp2);

/* stick a carriage return on the end of output

record*/

putc('\n' ,fp2);

}

235

if (rec.transact[0] == 'U')

{

i2 = i2 + 1; /* add one to i2 */

strncpy(&temp[0] ,&rec.bid[0], 10); /* transfer bid to temp */

temp[10] = '\0'; /* tack on a null */

xbid = atof(temp); /* convert to float */

xbid = xbid / 100000;

 strncpy(&temp[0],&rec.offer[0],10); /* transfer offer to temp */

temp[10] = '\0'; /* tack on a null */

xoffer = atof(temp); /* convert to float */

xoffer = xoffer / 100000;

/* build up output file for updates, space delimiters */

fwrite(&rec.cusip[0], 1,8,fp3);

putc(' ',fp3);

fwrite(&rec.date[0],1,8,fp3);

putc(' ',fp3);

fprintf(fp3,"%10.5f %10.5f\n",xbid,xoffer);

}

/* get the next record */

fread((char *)&rec,1,87,fpl);

/* end while */

printf("i1 = %d\n",i1);

printf("i2 = %d\n",i2);

fclose(fp1);

fclose(fp2);

fclose(fp3);

}

236

price.file used for input

U459145 10199303080094868000009780300094CD9AACOllIBF, AUSTRALIAN DOLLAR BOND oooooooo

A459145 101 99303080094868000009780300094CD9AACOllIB F, AUSTRALIAN DOLLAR BOND oooooooo

U4591453019930308010S5550000109101000962F3ACC026IBF, MULTICURRENCY SERIES 026 oooooooo

ULGLAKlUG 1 9930308{)()()()()()()(AKJHACC8011ST SUPPLEMENTAL INCREASE FOR oooooooo

UDLHJHLJG 1 9930308000000000000000GDLGACC8022ND SUPPLEMENTAL DEPOSIT FOR oooooooo

U62623K22199303080109450000011509800094B73ALML3HMUN INV TR FD 3H AL oooooooo

.U62623K33199303080086177000009110700094B81ALML3JMUN INV TR FD 3J AL oooooooo

U62623K63199303080089970000009460900094DJ4ALML3NMUN INV TR FD 3N AL oooooooo

U62623L391993030801 07348000011 268200094DN2ALML3VMUN !NY TR FD 3V AL oooooooo

U62623L58199303080109610000011564800094DP7ALML3YMUN INV TR FD 3Y AL oooooooo

U62623M40199303080111100000011624100094DWIALMI.AGMUN INV TR FD 4G AL oooooooo

U62623N79199303080109647000011466300094D59ALMlAWMUN INV TR FD 4W AL oooooooo

U4591452019930308009543500000968890009DBLOAMLOOlIBF FST CTS AUST. FGN HLDR 1\E00000000

U4591452319930308009537300000968260009DBLlAMLOO2IBF FST CTS AUST-2FGN HLDR 1\E00000000

U4591452519930308009738400000988670009DBL2AMLOO3AUSSIE MOKI'GAGELINK SERIES 3 oooooooo

U62623R71199303080105325000011131600094J52AMT001MUN INV TR FD AMT 001 MPS oooooooo

U62623T26199303080105287000011077500094J53AMTOO2MUN INV TR FD AMT 002 MPS oooooooo

U62623TS4199303080099206000010497700094J54AMT003MUN INV TR FD AMT 003 MPS oooooooo

U62623T65 199303080091926000009719400094J55AMTOO4MUN INV TR FD AMT 004 MPS oooooooo

U62623Ul 71993030801 09282000011 539800094J56AMTOOSMUN INV TR FD AMT 005 MPS oooooooo

U62623U19199303080095965000010145200094J57AMTOO6M TR FD AMT 006 MPS oooooooo

U62623U49199303080107253000011349500094J58AMTOO7MITR FD AMT 007 MPS oooooooo

U62623V45199303080107109000011333400094J59AMT008MITR FD AMT 008 MPS oooooooo

U62623V53199303080105878000011180000094J60AMTOO9MITR FD AMT 009 MPS oooooooo

U62623V80199303080108501000011462600094J61AMTOI0MITR FD AMT 010 MPS oooooooo

U62623V84199303080088507000009342300094J62AMT011MITR FD AMT 011 MPS oooooooo

U62623V85199303080106821000011285700094J63AMTOI212TH AMT SERIES oooooooo

U62623W851993030801 063980000 11253200094J64AMTO 1313TH AMT SERIES oooooooo

U62623X20199303080107965000011424500094J65AMTOI4MITF 14TH AMT oooooooo

U62623XI9199303080107774000011404000094J66AMTOI5MITF 15TH AMT oooooooo

237

priceadd.input created by uitp.c
45914510199303081993030894CD9AACOllAACIBF,AUSTRALlANDOLLARBOND

priceupd.input created by uitp.c

45914510 19930308 948.68000 978.03000

4591453019930308 1055.55000 1091.01000

LGLAKHJG 19930308 0.00000 0.00000

DLH.JHLJG 19930308 0.00000 0.00000

62623K22 19930308 1094.50000 1150.98000

62623K3319930308 861.77000 911.07000

62623K6319930308 899.70000 946.09000

62623L39 19930308 1073.48000 1126.82000

62623L58 19930308 1096.10000 1156.48000

62623M40 19930308 1111.00000 1162.41000

62623N79 19930308 1096.47000 1146.63000

4591452019930308 954.35000 968.89000

45914523 19930308 953.73000 968.26000

45914525 19930308 973.84000 988.67000

62623R71 19930308 1053.25000 1113.16000

62623T26 19930308 1052.87000 1107.75000

62623T54 19930308 992.06000 1049.77000

62623T65 19930308 919.26000 971.94000

62623U17 19930308 1092.82000 1153.98000

62623U19 19930308 959.65000 1014.52000

62623U49 19930308 1072.53000 1134.95000

62623V45 19930308 1071.09000 1133.34000

62623V53 19930308 1058.78000 1118.00000

62623V80 19930308 1085.01000 1146.26000

62623V84 19930308 885.07000 934.23000

62623V85 19930308 1068.21000 1128.57000

62623W85 19930308 1063.98000 1125.32000

62623X20 19930308 1079.65000 1142.45000

62623X19 19930308 1077.74000 1140.40000

238

argtest.c

/* program to access command line arguments * /

#include <stdio.h>

/* void main(int argc, char * argv[]) ANSI version */

main (argc, argv) /* K & R version */

int argc; /* count of the number of commands on the command line */

char * argv[]; /* the arguments as strings */

{

int i = 0;

printf("Arg count argc => %i\n",argc);

printf("Command line args are \n");

/* while (argv[i]) also works */

while (argv[i] != NULL)

{

printf("argv[%i] => %s\n",i,argv[i]);

i++;

}

exit(0);

 }

run this program by typing:

a.out

a.out 1 2 3

a.out dog cat bird hello kitty

and see what output you get

it’ll explain argc and argv completely

239

argc, argv, envp

argc count of arguments on command line

argv array of strings, parsed command line

envp array of strings, parsed environment

ex12 filel file2

argc

3

argv

ex12 \0

filel \0

file2 \0

null

240

envtest.c C Interface to UNIX Environment

/* program to access command line arguments, program to access environment variables

*/

#include <stdio.h>
main (argc, argv, envp)
int argc;
char * argv[];
char * envp [];
{

int env _count = 0;
while (envp[env _count] !=
NULL)
{

printf("%s\n" ,envp[env
_count]);
env _count++;

}
exit(0);

}

DISPLAY=:O
DSQUERY=SYBASE
FONTPATH=/usr/openwin/lib/fonts
FRAMEBUFFER=/dev/fb
HELPPATH=/usr/openwin/lib/help
HOME=/usr/jtk
LD _LIBRARY _PATH=/usr/openwin/lib
LOGNAME=jtk
MANPATH=/usr/openwin/share/man:/usr/man
NEWSSERVER=2457 672469 .2000;spd21
OPENWINHOME=/usr/openwin

PATH=/usr/jtk/bin:/usr/openwin/bin/xview:/usr/open
win/bin:
/usr/local/bin:/usr/local/lang:/usr/local/sybase
/bin:
/usr/uc b:/usr /bin:/usr/etc:. :/usr/5bin

PWD=/usr/local/jtk/jtk/C/myCprograms
SHELL=/bin/csh
SYBASE=/usr/local/sybase
TERM=sun
USER=jtk
WINDOW _PARENT=/dev/winO
WMGR_ENV _PLACEHOLDER=/dev/win3
XAPPLRES D IR=/usr/openwin/lib/X 11/app-defaults
TERMCAP=sun-cmd:te=\E[>4h:ti=\E[>4l:tc=sun:

241

exercise 20

/* write a C program that will copy one file to another file */

/* the user should enter the file names from the command line */

/* optional brain teaser * /

/* allow the user to enter file names from the command line OR

if they don't put any file names on the command line

prompt them for the file names */

/* optional brain buster */

/* allow the user to copy one file to multiple files simultaneously */

/* is there a limit to how many output files they can create??? */

242

sol20.c

#include <stdlib.h>

#include <stdio.h>

/* argc is count of number of command line arguments */

/* argv is array of strings each string is one of the command line arguments */

void do_copy(char * s, char * d)

{

FILE * in, *out;

int c;

in = fopen(s,"r");

if (in == NULL)

{

printf("Cannot open %s \n",s);

exit(-l);

}

out = fopen(d,"w");

if (out == NULL)

{

printf("Cannot open %s \n",d);

exit(-2);

}

while ((c = getc(in) != EOF)

putc(c,out);

fclose(in);

fclose(out);

}

int main(int argc, char * argv[])

{

int i;

char dest[20],source[20];

if (argc == 1)

{

243

printf("Please enter source filenmae \n");

scanf("%s", source);

printf("Please enter dest filename \n");

scanf("%s" .dest);

}

else if (argc == 2)

{

strcpy(source,argv[l]);

printf("Please enter dest filename \n");

scanf("%s" ,dest);

}

if (argc >= 3)

{

for (i = 2; i < argc; i++)

{

do_copy(argv[1],argv[i]);

}

else

do _ copy(source,dest);

printf("File copy complete \n");

 }

244

prog78.c Storage Qualifiers register, const,volatile
/* program to introduce storage qualifiers */

main ()

{

/* i will be local to this routine * /

/* it will be on the stack if there is room * /

/* otherwise it will be in data area of routine */

int i;

/* buffer will be local to this routine */

/* it will be on the stack if there is room */

/* otherwise it will be in data area of routine */

/* this declaration automatically consumes 80 bytes of data */

char buffer[80];

/* b_ptr is local to this routine */

/* it can point to a string of arbitrary length */

/* it consumes only sizeof(char *) */

/* the area holding the string will be managed by the

system, perhaps being dynamically allocated

and deallocated as space requirements change */

char * b_ptr;

/* want these variables in registers if possible */

/* perhaps i will be used as a loop counter */

/* putting it in a register will produce faster execution */

register int i;

/* text_pointer will be used in repeated string

operations, putting it in a register

will speed execution * /

register char * text pointer;

245

/* want these variables in read only memory */

/* want to make sure their value doesn't change */

/* during execution of program */

/* they will not be on the stack */

/* they are local to this routine */

const double pi = 3.141592654;

const char *cp = &buffer[0];

/* want to prevent compiler from removing */

/* optimizations of code * /

/* if I did not have the volatile keyword here, the

compiler would remove the second statement

shown at location A below * /

volatile char * out port;

/* assign initial address to text pointer */

/* it now points to the zeroeth byte of the character array buffer * /

text pointer = &buffer[0];

/* i and text pointer are in registers */

/* faster execution */

for (i = 0; i < 80; i++)

*text_pointer++ = 0x00;

246

/* LOCATION A */

/* this is code that is typical in device drivers

of communication software, you want to write

to bytes in a row to some chip through its port address * /

/* an optimizing compiler would think that you

changed the value at outport to OxOa and

then changed it to OxOd, thus the first

statement changing it to OxOa has no value,

therefore an optimizing compiler would remove the

first statement from the executable */

/* the compiler would think that the first */

/* assignment is useless and would optimize */

/* it out of the code */

/* the volatile prevents this */

/* if out port was assigned to coml port Ox2f8 */

/* and I said */

/* *out_port = OxOa; */

/* *out_port = OxOd; */

}

247

speedl.c Typical Inefficient Code
/* demonstrates some "usual" (and inefficient) ways things are done */

#ifdef SPEED 1

main ()

{

int k.l:

char buffer[2001];

for (k = 0; k < 10000; k++)

{

for (l = 0; l < 2000; l++)

{

buffer[l] = 0x00;

}

}

}

/* time to run 19.4u O.Os 0: 19 99% 0+132k O+Oio Opf+Ow */

#endif

/* compare the run time statistics for SPEED1 to SPEED2 (on next page) */

248

#ifdef SPEED2

/* speed2.c */

/* demonstrates "faster" way things are done by more experienced programmers */

main ()

{

register int k;

register int i;

register char * b_ptr;

char buffer[200 1];

for (k = 0; k < 10000; k++)

{

b_ptr = &buffer[0];

for (i = 0; i < 2000; i++)

{

*b_ptr++ = 0x00;

}

}

}

#endif

14.6u 0.0s 0:14 99% 0+132k O+Oio Opf+Ow

13.2u 0.0s 0: 13 99% 0+ 132k O+Oio Opf+Ow

10.0u 0.0s 0:10 99% 0+ 132k O+Oio Opf+Ow

7.6u 0.0s 0:08 99% 0+ 132k O+Oio Opf+Ow

249

prog64.c copying strings using pointers
/* prog64.c copying strings using pointers */

/* this routine uses a pointer to specify where the data comes from

and a pointer to specify where the data is supposed to end up

it also uses pointer arithmetic in the copying loop,

it has an inefficiency: whose correction is shown

the test *from != '\0' is unneccessary

*/

void copy_l (to, from)

char *to, *from;

{

for (; *from != '\0'; from++, to++)

*to = *from;

*to = '\0';

}

/* copying strings using pointers is most efficient method

effectively uses pointer arithmetic and implied tests */

void copy_2 (to, from)

char *to, *from;

{

/* remember C is an expression language and each statement

returns a value. In this case, we can use that

value to make our code more concise */

#if 0

while (*from)

*to++ = *from++;

*to = '\0';

#endif

while (*to++ = *from++) ;

char s 1 [] = "Terrill Owens";

char s2[40]; char s3[40];

250

char s4[40]; char s5[40];

char s6[40];

main()

{

printf("sl initially is %s\n",sl);

copy_l(s2,sl);

printf("s2 is now %s\n" ,s2);

printf("s3 initially is %s\n",s3);

copy_1 (s3,"C Programming is Totally Tubular");

printf("s3 now is %s\n",s3);

printf("s4 initially is %s\n",s4);

copy_2(s4,sl);

printf("s4 now is %s\n",s4);

printf("s5 initially is %s\n",s5);

copy_2(s5,"C Programming is Totally Tubular");

printf("s5 now is %s\n" ,s5);

printf("sl => %s s6 => %s \n",sl,s6);

strcpy(s6,s 1);

printf("sl => %s s6 => %s \n",sl,s6);

}

sl initially is Terrill Owens
s2 is now Terrill Owens
s3 initially is
s3 now is C Programming is Totally Tubular
s4 initially is
s4 now is Terrill Owens
s5 initially is
s5 now is C Programming is Totally Tubular
s 1 => Terrill Owens s6 =>
s 1 => Terrill Owens s6 => Terrill Owens

251

Exercise 21

/* write a C function that will determine the length

of a user input string, use pointers and try to make it

as efficient as possible */

/* Use the strlen built-in function to check your work */

Solution For Exercise 21

/* edgar.c * /

int slength (char * string ptr)

{

char * cptr = string_ptr;

while (*cptr++);

return (cptr - string_ptr - 1);

}

main()

{

int slength (char * string);

printf("%i ", slength(" 12345"));

printf("%i ", slength(''''));

printf("%i ",slength("12345678901234567890 12345"));

printf(''\n'');

}

252

prog73.c printf in depth

How to print integers

%i integer base 10

%o integer base 8

%x integer base 16

%u unsigned integer

%x integer base 16, lower case

letters

%X integer base 16, upper case

letters

%#x integer base 16, lower case letters, leading Ox

%#X integer base 16, upper case letters, leading OX

#define PR printf

main()

{

int prec; float f; int w;

PR("lnteger Examples:\n");

PR(''\tbase 10 \tbase 8 \tbase 16\tunsigned int \n");

PR(''\t%i\t\t%o\t%x\t%u\n\n'', 123, 123, 123, 123);

PR(''\tbase 16\t\tbase16 all caps\tbasel6 with leading x\tbasel6 with CAPS & X\

n");

PR(“\t%x\t\t%X\t\t\t%#X\t\t%#X\n\n",1007,1007,1007,1007);

PR(''\tbase 10, sign\tbasel0, lead space, base 10 rjust, fw 7,0

fill");

PR(“\t base 10,7 digits min fw\n");

PR(''\t%+i\t\t% i\t\t\t%07i\t\t\t\t% .7i\n\n", 1 ,2,3,4);

PR("\nString Examples:\n");

PR(''\tpercent s only, string in field sized to fit\n");

253

PR("\112345678901234567890123456789012345678901234567890\n");

PR(''\t%s\n\n'',''the quick brown fox jumped over the lazy dog");

PR(''\tpercent .5s first five chars from string\n");

PR(''\t12345678901234567890123456789012345678901234567890\n");

PR(''\t%.5s\n\n'',''the quick brown fox jumped over the lazy dog");

PR(''\tpercent 30s at least thirty chars from string\n");

PR("\11234567 890123456789012345678901234567890 1234567890\n");

PR(''\t%30s\n\n'',''the quick brown fox jumped over the lazy dog");

PR(''\tpercent 20.5 s five chars, rjust in a field 20 wide\n");

PR(“\t1234567890 1234567890123456789012345678901234567 890\n");

PR(''\t%20.5s\n\n'',''the quick brown fox jumped over the lazy dog");

PR(''\tpercent - 20.5 s five chars, ljust in a field 20 wide\n");

PR(“\t1234567890 1234567890 1234567890 1234567890 1234567890\n");

PR(''\t%-20.5sf\n\n'',''the quick brown fox jumped over the lazy dog");

254

PR("Float Examples:\n");

PR(''\t7 .2f\1\17 .5f\t\t1.5f of 12345.67890\n");

PR(''\t \n");

PR(''\t% 7 .2f \1%7 .5f\1% 1.5t\n\n", 12345.67890, 12345.67890,

12345.67890);

PR(''\t7 .2f\1\17 .5fWl.5f of 1.2345\n");

PR(''\t \n");

PR(''\t% 7 .2f \1%7 .5f\1% 1.5t\n\n", 1.2345, 1.2345, 1.2345);

/* special cases where the precision is an argument */

PR("Enter a float\n");

scanf("%f” ,&f);

PR("Enter number of digits after decimal to display\n");

scanf("%i",&prec);

PR("\n...................................");

PR("%.*t\n\n", prec,f);

/* special case where the precision and total field width are an argument */

PR("Enter a fioat\n");

scanf("% f' ,&f);

PR("Enter number of digits after decimal to display\n");

scanf("%i" ,&prec);

PR("Enter total field width \n");

scanf("%i",&w);

PR(" \n");

PR("%*. *f\n", w,prec,f);

PR("\nCharacters:\n");

PR(" 12345678901234567890123456789012345678901234567890\n");

PR("%c%3c\n", 'W', 'W');

}

255

INTEGE

RS

%+i print the sign character

% i force a leading space in front of a positive

%07i right justified, 7 digit width, zero leading fill

%.7i minimum field with 7 digits, right justified, leading zeroes

FLOATS

%8.2f total field width eight, two decimal positions

%.*f”',x,d) default field width, x decimal positions

%*.*f”,x,y,d) total field width x, y decimal positions

The Strings

%s null terminated string

%5s first five characters (or until delimiter)

%.5s first five characters (forget delimiter)

%20.5s five characters, right justified in 20 character field

%-20.5s five characters, left justified in 20 character field

scanf modifiers

%s read in a string delimited by ws or null

%5s read in up to 5 characters delimited by ws or null

%5s: %5s$%5s read in up to 5 characters until : delimiter

read in up to 5 characters until $ delimiter

read in up to 5 characters

%[abc]s read in characters until ws, null or non abc encountered

%[^abc]s read in characters until ws, null or abc encountered

%i %c read in integer, consume ws, read in charater

% i%c read in integer, do not consume ws, read in character

256

prog74.c scanf in depth

/* program to illustrate reading using scanf */

/* clearly demonstrates the next scanf picking up */
/* where the last scanf left off */
main ()
{

char c;
char s[60];
int i;

i = scanf("%c",&c);
printf("i = %d c => %e\n",i, c);
i = scanf("%s",s);
printf("i = %d s => %s\n",i,s);

i = scanf("%5s",s);
printf("i = %d s => %s\n",i,s);

i = scanf("%[abc]",s);
printf("i = %d s=> %s\n",i,s);

i = scanf("%[^abc]",s);
printf("i = %d s => %s\n",i,s);

}
input file:
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz
the alphabet abcdefghijklmnopqrstuvwxyz

program output
i = 1 c => t
i = 1 s => he
i = 1 s => alpha
i = 1 s => b
i = 1 s => et

257

prog75.c scanf in depth

/* attempts to fix scanf idiosyncracies */

main ()

{

char c; char trash[80]; char s[80];

int i; int j;

char sl[80]; char s2[80]; char s3[80];

/* read the first character into c * /

/* read the rest of the line into trash */

i = scanf("%c%[^\n]\n" ,&c,trash);

printf("i = %d c => %c trash => %s\n",i, c, trash);

/* clean out both of the buffers * /

for (i = 0; i < 80; i++)

{

trash[i] = s[i] = 0x00;

}

i = scanf("%s%[^\n]\n",s,trash);

printf("i = %d s => %s trash => %s\n",i,s);

for (i = 0; i < 80; i++)

{

trash[i] = s[i] = 0x00;

}

i = scanf("%5s%[^\n]\n" ,s,trash);

printf("i = %d s => %s trash => %s\n",i,s);

for (i = 0; i < 80; i++)

{

trash[i] = s[i] = 0x00;

}

258

i = scanf("%[abc]%[^\n]\n",s,trash);

printf("i = %d s=> %s trash => %s\n",i,s);

for (i = 0; i < 80; i++)

{

trash[i] = s[i] = 0x00;

}

i = scanf("%[^abc]%[^\n]\n",s,trash);

printf("i = %d s => %s trash => %s\n",i,s);

/* read the line as three white space separated strings */

i = scanf("%s %s %s",sl,s2,s3);

printf("sl => %s\n",sl);

printf("s2 => %s\n",s2);

printf("s3 => %s\n",s3);

}

259

input file

File Input Pointer

the alphabet abcdefghijk1mnopqrstuvwxyz
the alphabet abcdefghijk1mnopqrstuvwxyz
the alphabet abcdefghijk1mnopqrstuvwxyz
the alphabet abcdefghijk1mnopqrstuvwxyz
the alphabet abcdefghijk1mnopqrstuvwxyz
the alphabet abcdefghijk1mnopqrstuvwxyz
the alphabet abcdefghijk1mnopqrstuvwxyz
the alphabet abcdefghijk1mnopqrstuvwxyz

sample output
i = 2 c => t trash => he alphabet abcdefghijklmnopqrstuvwxyz
i = 2 s => the trash => alphabet abcdefghijklmnopqrstuvwxyz
i = 2 s => the trash => alphabet abcdefghijklmnopqrstuvwxyz
i = 0 s=> trash =>
i = 2 s => the trash => alphabet abcdefghijklmnopqrstuvwxyz
sl => the
s2 => alphabet
s3 => abcdefghijklmnopqrstuvwxyz

260

Sample Run (Illustrates logical operations)

Anding things together

And of

10001111

00000011

00000011

Oring things together

Or of

10001111

00000011

10001111

Xoring things together

Xor of

10001111

00000011

10001100

One's complementing things

One's complement of

10001111

01110000

One's complement of

00000011

11111100

261

prog67.c Bit Operations

/* and & */

/* inclusive or | */

/* exclusive or ^ */

/* ones complement ~ */

/* left shift < < */

/* right shift >> */

disp_binary(c)

char c;

{

int i;

for (i = 0; i < 8; i++)

{

if (c & 0x80)

printf(" 1 ");

else

printf("0");

c = c << 1; /* left shift c by one bit */

/* the high bit shifted out goes in ‘bit bucket’ */

}

printf(''\n'');

}

262

main ()

{

char a,b,result;

printf(" Anding things together \n");

printf("And of\n");

a = Ox8f; /* 1000 1111 */

disp_binary(a);

b = Ox03; /* 0000 0011 */

disp_binary(b);

result = a & b; /* if either bit is zero, result is 0 */

disp_binary(result); /* if both bits are one, result is 1 */

printf(''\n'');

printf("Oring things together \n");

printf("Or of\n");

a = Ox8f; /* 1000 1111 */

disp_binary(a);

b = Ox03; /* 0000 0011 */

disp_binary(b);

result = a | b; /* if either bit is one,

result is one */

disp_binary(result);

printf(''\n'');

printf("Xoring things together \n");

printf("Xor of\n");

a = Ox8f; /* 1000 1111 */

disp_binary(a);

b = Ox03; /* 0000 0011 */

disp_binary(b);

result = a ^ b; /* if only one bit is one, result is one */

disp_binary(result);

263

printf(''\n'');

printf("One's complementing things \n");

printf("One's complement of\n");

a = Ox8f; /* 1000 1111 */

disp_binary(a);

a = ~a; /* switch 1 to 0, and 0 to 1 */

disp_binary(a);

printf(''\n'');

printf("One's complement of\n");

b = Ox03; /* 0000 0011 */

disp_binary(b);

b = ~b;

disp_binary(b);

printf(''\n'');

264

Exercise 22

/* write a c program that will accept a number from the user

display it in hexadecimal format then

display it in binary format, one bit at a time

each bit on a separate line */

Solution For Exercise 22
/* bits.c */
/* input a positive integer number

display it in hex
display it in binary
display it one bit per line, from high to low
for added challenge, leave off any leading zeroes

*/
main()
{

int i,x,ptr;
int last one;
int bits[8 * sizeof(x)];

printf("Enter number \n");
scanf("%i",&x);
printf("%i base 10 0x%x base 16 ",x,x);
for (i = 0; i < 8 * sizeof(x); i++)
{

bits[i] = x & (int) 1;
x = x >> 1;
if (bits[i] == 1)

lastone = i;
}

while (last_one >= 0)
printf("%i" ,bits[last_one--]);

printf(" base 2 \n");
}

Enter num ber
5
5 base 10 0x5 base 16 101 base 2

Enter number
127
127 base 10 Ox7f base 16 1111111 base 2

265

prog71.c

#ifdef compiler keyword conditional compilation

/* program to illustrate #ifdef */

/* this program will be compiled and run several times */

/* on each compile, I will define BEFORE or AFTER differently *

/* on each compile, I will define BEFORE or AFTER differently */

main ()

{

int i;

int sum;

sum = O;

for (i = 0; i < 10; i++)

{

#ifdef BEFORE

printf("before addition sum = %d i = %d \n",sum,i);

#endif

sum = sum + i;

#ifdef AFTER

printf("after addition sum = %d i = %d \n",sum,i);

#endif

}

printf("sum is %d \n",sum);

}

acc –o prog71 prog71.c

sum is 45

acc -D BEFORE -o prog71 prog71.c

before addition sum = 0 i = 0

before addition sum = 0 i = 1

before addition sum = 1 i = 2

before addition sum = 3 i = 3
266

before addition sum = 6 i = 4

before addition sum = 10 i = 5

before addition sum = 15 i = 6

before addition sum = 21 i = 7

before addition sum = 28 i = 8

before addition sum = 36 i = 9

sum is 45

acc -D BEFORE -D AFfER -o prog71 prog71.c

before addition sum = 0 i = 0

after addition sum = 0 i = 0

before addition sum = 0 i = 1

after addition sum = 1 i = 1

before addition sum = 1 i = 2

after addition sum = 3 i = 2

before addition sum = 3 i = 3

after addition sum = 6 i = 3

before addition sum = 6 i = 4

after addition sum = 10 i = 4

before addition sum = 10 i = 5

after addition sum = 15 i = 5

before addition sum = 15 i = 6

after addition sum = 21 i = 6

before addition sum = 21 i = 7

after addition sum = 28 i = 7

before addition sum = 28 i = 8

after addition sum = 36 i = 8

before addition sum = 36 i = 9

after addition sum = 45 i = 9

sum is 45

acc -D Before -D After -o prog71 prog71.c

sum is 45

267

Appendix: Warning about order of

evaluation

It is important (critical) to note that:

"the order of evaluation of subexpressions in a C expression where the order of

evaluation is not

defined is not defined".

This means that the statement:

a = b + c;

only implies that b and c are added and the result stored in a.

We can make no guarantee which will be retrieved first , a or b.

If we have 2 functions that return integers fl and f2:

int c;

c = f1() + f2();

we cannot state which function, fl or f2, will be

executed first.

likewise:

int c = 7;

int a;

a = c + c++;

a will have either the value 14 (7 + 7) or 15 (8+7).

We cannot state which it will be and be sure that the answer will be the same on all

systems.

int i = 9;

printf("%i %i", i, ++i);

will print either 9 10

or 10 10

this usually does not present any problems, but the programmer should be

aware of it.

RECCOMMENDATION: NEVER make a second reference to a variable being

modified in the same expression where the order of evaluation is undefined. Dennis

Ritchie used to say that "such and such is undefined" What he meant was, “if you

try to do the undefined thing then the results will most likely be something other than

268

what you expected”. Then he would smile and say “Garbage In, Garbage Out”, or

sometimes just “GIGO”

269

quicksort.c a quicksort example
#include <stdio.h>

#include <math.h>

#define MAXQUICK 128

int quick[MAXQUICK] /* array that holds the data */

int quickindex; /* index of how many elements there are */

FILE * fd; FILE * fd 1;

main ()

{

void printdata(void);

void sortdata(int start pos, int end_pos);

int intemp; int c;

fd = fopen("datafile","r");

if (fd == NULL)

{

printf("open 1 failed \n");

exit(-1);

}

fd1 = fopen("quickout" ,"w");

if (fd1 == NULL)

{

printf("open2 failed \n");

exit(-2);

}

/* input the data from file */

quickindex = 0;

while (fscanf(fd, " %d", &intemp) != EOF)

{

/* store data in array */

quick[quickindex++] = intemp;

270

}

quickindex--;

/* print original list of data */

printf("ORIGINAL LIST\n");

printdata();

printf(''\n\n'');

sortdata(0,quickindex);

printdata();

close(fd); close(fdl);

}

void

printdata(void

)

{

int i;

fprintf(fd 1 ,”\n\n”);

for (i = 0; i <= quickindex; i++)

{

printf(" %d ",quick[i]);

fprintf(fd 1, " %d ",quick[i]);

}

printf("\n\n");

fprintf(fd1,”/n”);

return;

} /* end printdata

* /

271

#define UP 0

#define DOWN 1

void sortdata(int start_pos, int end_pos)

{

int temp;

int target_pos;

int direction = DOWN;

int in_end_pos;

int in_start_pos;

int temp_lower, temp_upper;

in_start_pos = start_pos;

in_end_pos = end_pos;

target pos = start_pos;

temp_lower = start_pos;

temp_upper = end_pos;

printf("SORTDATA %i %i \n",start_pos,end_pos);

printdata();

fprintf(fdl,"SORTDATA %i %i \n",start_pos,end_pos);

if (start_pos >= end_pos)

return;

while (temp_lower < temp_upper)

{

if (direction == DOWN)

{

if (quick[temp_upper] >= quick[target_pos])

{

/* no update, move pointer */

temp_upper--;

272

}

else

{

/* swap values */

temp = quick[temp_upper];

quick[temp_upper] = quick[target_pos];

quick[target_pos] = temp;

printdata();

/* change direction of travel */

direction = UP;

/* change pointer to target value */

target_pos = temp_upper;

}

}

else /* direction of travel is UP */

{

if (quick[temp_lower] <= quick[target_pos])

temp _lower++;

else

{

/* swap values */

temp = quick[temp_lower];

quick[temp_lower] = quick[target_pos];

quick[target_pos] = temp;

printdata();

/* change direction of travel */

direction = DOWN;

/* change pointer to target value */

target_pos = temp_lower;

}

}

 } /* end while */

273

/* at this point the left and right pointers have met or crossed */

/* now we have divided our list into two segments */

/* sort each of the smaller segments */

/* RECURSION */

/* do left side * /

if (in_start_pos < target_pos - 1)

{

printf("Calling left side \n");

sortdata(in_start_pos, target_pos - 1);

}

/* do the right side * /

if (target_pos + 1 < in_end_pos)

{

printf("Calling right side \n");

sortdata(targetpos + 1 ,in_end_pos);

}

return;

} /* end sortdata * /

274

ptrtofunc.c Pointers To Functions

void exit();

static void proca(fno,al,a2,a3,a4,aS)

int fno,al,a2,a3,a4,aS;

{

int stat;

stat = printf("In proca\n");

if (stat == 0)

exit(stat);

stat = printf("%i %i %i %i %i %i\n",fno,al,a2,a3,a4,aS);

if (stat == 0)

exit(stat);

}

static void procb(fno,al,a2,a3,a4,aS)

int fno,al,a2,a3,a4,aS;

{

int stat;

stat = printf("In procb\n");

if (stat == 0)

exit(stat);

stat = printf("%x %x %x %x %x %x\n",fno,al,a2,a3,a4,a5);

if (stat == 0)

exit(stat);

}

275

static void procc(fno,al,a2,a3,a4,a5)

int fno,al,a2,a3,a4,a5;

{

int stat;

stat = printf("In procc\n");

if (stat == 0)

exit(stat);

stat = printf("%5i %5i %5i %5i %5i %5i\n",fno,al,a2,a3,a4,a5);

if (stat == 0)

exit(stat);

 }

static void

(*procedure_table[]) () =

{

p

r

o

c

a

,

p

r

o

c

b

,

p

r

o

c

c

};

276

int main ()

{

int funcno, arg1, arg2, arg3, arg4, arg5;

int i,stat;

funcno = 0;

argl = 100;

arg2 = 200;

arg3 = 300;

arg4 = 400;

arg5 = 500;

stat = printf("In main

routine \n");

if (stat == 0)

exit(stat);

while (funcno != -1)

{

stat = printf(,'\nEnter function you wish to

call\n");

if (stat == 0)

exit(stat);

stat = printf("-

1\tquit\nO\tproca\n1\tprocb\n2\tprocc\n");

if (stat == 0)

exit(stat);

stat =

scanf("%i",&funcno);

if (stat == 0)

exit(stat);

if (funcno != -1 && funcno >= 0 && funcno

<= 2)

277

{

(*procedure_table[funcno])

(funcno,argl,arg2,arg3,arg4,arg5);

}

} /* end while */

retur

n(0);

} /* end

main */

278

Appendix: Reading complex declarations:

static void (*procedure_table[]) () =

procedure_table is: an array of pointers at functions that return void

struct mystruct *struct_pointer_array[];

struct_pointer_array is an array of pointers to structures of type mystruct

struct mystruct (*struct_array_pointer)[];

struct_array _pointer is a pointer to an array of structures of type

mystruct

279

Appendix To Brace or Not To Brace

main ()

{

int x;

printf("Enter x \n");

scanf("%i",&x);

/* this decision structure is fully braced and indented in the KK style */

if(x < 10)

{

 printf("x less than ten \n");

}

else if (x > 10)

{

printf("x is greater than ten \n");

if (x < 100)

{

printf("x less than one hundred\n");

}

else

{

printf("x is greater than or equal to 100\n");

}

else

{

printf("x is exactly ten \n");

}

/* this decision structure is not braced, indented only in KK style */

if (x < 10)

printf("x less than ten \n");

else if (x > 10)

if (x < 100)

printf("x less than one hundred\n");

280

else

printf("x is greater than or equal to lCXJ\n");

else

printf("x is exactly ten \n");

/* this decision structure removes the else from the nested if

and introduces problem encountered when you leave off the braces */

/* the last else belongs to the if (x < 100) NOT the if (x < 10) */

/* this could have been avoided by bracing */

if (x < 10)

printf("x less than ten \n");

else if (x > 10)

if (x < l00)

printf("x less than one hundred\n");

else

printf("x is exactly ten \n");

/* this expression is indented and braced in a K&R like method */

/* decide for yourself which style is most readable and MAINTAINABLE */

if(x < 10){

printf("x less than ten \n"); }

else if (x > 10) {

if (x < 100) {

printf("x less than one hundred\n"); }

else {

printf("x is greater than or equal to 100\n"); } }

else { printf("x is exactly ten \n"); }

}

281

Enter x 5

x less than ten

x less than ten

x less than ten

x less than ten

Enter x 11

x is greater than ten

x less than one hundred

x less than one hundred

x less than one hundred

x less than one hundred

Enter x 102

x is greater than ten

x is greater than or equal to 100

x is greater than or equal to 100

x is exactl y ten

x is greater than or equal to 100

282

NOTES:

Braces with only one statement within them are 'free' (no code

overhead).

Experience has taught that there are times when a single statement within a loop or

decision structure needs to have a debug statement added. This means that you have to

add the braces anyway. Puting them in as an afterthought may lead to problems:

if (value == 9) original code

call function();

if (value == 9)

printf("if case true calling function");

call_function(); code with debug statement and added bug

code should look like this

if (value == 9)

{

call function();

}

if (value ==9) original code

{

printf(“if case true calling function");

call_function();

}

283

Appendix

main ()

{

int i,j;

int x[5] = { 1 , 2 , 3, 4, 5 };

int y[2][3] = { {10,20,30}, {100, 200, 300} };

printf("AAA \n");

for (i = 0; i < 5; i++)

/* this works as you'd expect */

printf("%i ",x[i]);

printf(''\n\n'');

printf("BBB\n");

for (i= 0; i < 5; i++)

/* THIS ALSO WORKS !!! */

/* compiler knows i is of type int and x is of type pointer to int

and it generates the address correctly */

printf("%i ",i[x]);

printf(''\n\n'');

printf("CCC\n");

for (i = 0; i < 2; i++)

{

for (j = 0; j < 3; j++)

{

/* this works as you'd expect */

printf("%i ",y[i][j]);

}

printf(''\n'');

}

284

285

printf(''\n\n'');
printf("DDD\n")
;
for (i = 0; i < 2; i++)

{
for (j = 0; j < 3; j++)
{

/* THIS ALSO WORKS !!! */
/* compiler knows y is of type pointer to pointer to int

and i and j are of type int, figures out address correctly
*/
printf("%i ",i[y][j]):

}
printf(''\n'');

 }

printf("\n\n");
#if 0

/* this would be a compiler
error */
printf("EEE\n");
for (i = 0; i < 2;
i++)
{

for (j = 0; j < 3;
j++)
{

/* THIS would not work, compiler error I DON'T KNOW
WHY */
printf("%i ",i[j] [y]);

}
printf(''
\n'');

}
 #e
ndi
f
}

AAA
12345

BBB
12345

CCC
10 20 30
100 200 300

286

DDD
10 20 30
100 200 300

287

Crazy Address Stuff
int i;

int array[5];

for(i=0; i<5; i++

)

printf("%i

\n", array[i]);

for(i=0; i<5; i++

)

printf("%i

\n", i[array]);

Both these loops do the same thing: print out the contents of the array.

This is because array[i] is compiled as *(array+i) which is the same as *(i+array).

With a 2 dimensional array, the first index (major index) is itself an adderss, so in our

example:

int i,j;

int y[2][3] = { {10,20,30}, {1

00,200,300} };

for (i = 0; i < 2; i++)

for (j = 0; j < 3; j++)

 printf("%i ",y[i]

[j]);

y[i][j] means *(*(y+i) +j) where i is the offset into the array of row addresses

and j is the offset into that row

for (i = 0; i < 2; i++)

for (j = 0; j < 3; j++)

printf("%i ",i[y][j]);

i[y][j] means *(*(i+y)+j) which also works since it generates the same address as in

the previous example

288

for (i = 0; i < 2; i++)
for (j = 0; j < 3; j++)

printf("%i ",i[j][y]);
i[j][y] means *(*(i+j) +y) which results in a compiler error since we are attempting
to add 2 integers (i and j) and then dereference them.

289

APPENDIX
Some terminals don't have keys for (haracters that you may need in a C

program.

The C language can handle this to a certain extent.

The mechanism employed to deal with this situation is the trigraph.

The following three keystrokes, when used together with no spaces between them,

refer

to the indicated character on their right.

This technique is useful in the 3270 enviroment because the [and] characters

are not

found on the 3270 keyboard.

sequence

??= #

??([

??)]

??< {

??> }

??/ \

??' ^

??! |

??- ~

290

After JT Decided He Couldn’t Write One More Program....

He Started Writing Novels,

Please Consider Reading The Pattern (it’s about a programming error)

Or Consider Sampling Others of JT Kalnay’s Novels

291

292

Reviews for JT’s Programming Technothriller The Pattern

The first of JT Kalnay's works I've read, this early effort compares
nicely with Ryan's "Adolescence of P-1" or Grisham's "The Firm" but wisely
navigates around Powers' "Galatea 2.2" territory. You get a good sense
this writer has "been there" but there is more to "The Pattern" than just an
insider's view of an industry and culture that is pretty much a black box to
those that haven't. This one gets a 4 out of 5 simply for not quite cracking
the level of the big boys: Clancy, Ludlum, Cussler et al. Will be interested
to see how this author develops in this genre.

I was surprised to enjoy this book so much as it comes from a not so
well known author. Fantastic fiction.

I was thinking about the HAL 9000 malfunction in 2001 A Space
Odyssey while reading The Pattern. Decades ago, I wondered if people
would risk their lives on software. Now we have fly-by-wire controls in our
airplanes and we depend on software in our hospital equipment as well as
our cars. Software glitches can now kill. It's a really scary thought and I
really enjoyed the thrilling journey the author takes us on in this techno-
thriller treat. In the best spirit of science fiction it gives us pause to
consider the dependency we freely give to our technology. In addition, as
this story unfolds our humanity is laid bare in the face of technological
realities that are seldom realized by most of us.

293

Please Enjoy This Sample From The Pattern

June 19, 1994

Chantilly Virginia

Assembled From News Wire Reports

 A chartered executive Lear Jet inbound from Mexico City crashed today
in heavy fog during final approach to Dulles National Airport in Washington
D.C. Ten passengers and two crew members were killed instantly. There
were no Americans on the flight and there were no survivors. Although the
airplane had the latest electronics, it had aborted one landing due to the
fog and was in the process of lining up for a second attempt when the
accident occurred. The black box flight recorder has been recovered from
the wreckage and the bodies have been identified. The last transmission
from the cockpit was, "There seems to be something wrong with the
electronics. Going around." The plane disappeared from radar less than
ten seconds later.

June 20, 1994

San Francisco, California

 Thin clouds drifted high above the city by the Bay. Craig and Stacey sat
behind the APSoft building on the large cedar deck. A gentle breeze
caressed Stacey's long, summer golden hair. Craig was having a very hard
time concentrating on the report in his hands.

"Do you want to hear something weird?" Stacey asked.

"I don't know. Do I?" Craig answered.

"Yes. You do," Stacey said.

"Okay. Let's have it," Craig said.

"We're three for three this year," Stacey said.

"I don't get it," Craig said.

"On airplane crashes. We're three for three."

"I still don't get it," Craig said.

"Listen. First you know that guy in Turkey where the Blackhawks got
shot down. Second, we both know Rakesh who's been in Hong Kong where
the plane that crashed in Nagoya originated. Third, my friend in Mexico
works for that company that chartered that plane that crashed in Virginia
the other day. We're three for three."

"Better call the National Enquirer," Craig said.

"Jerk," Stacey said.

294

"We know somebody at almost every airline or aircraft manufacturer in
the world Stacey. It'd be a miracle if we didn't know someone somehow
related to every crash," Craig said.

"You're still a jerk," Stacey said.

"Yeah I know. It's part of my charm," he replied.

Stacey made a face at him and rolled her eyes.

"Please," she said.

"But you know what? You've piqued my curiosity. I'm going to do some
research and see how many wrecks there have been in the last year. It
does seem like there's been an unusual amount doesn't it?" Craig asked.

"Nice try," Stacey said.

"No. I'm totally serious. Now that you've pointed it out, I really am
curious."
 "Um huh," she said dismissively.

"Ready to throw it some more," Stacey asked, dangling Craig's birthday
Frisbee on the end of a long slender finger.

"Not right now," Craig said. I better get started on that research.

http://jtkalnaynovels.wordpress.com/

www.jtkalnay.com

295

http://www.jtkalnay.com/
http://jtkalnaynovels.wordpress.com/

 JT Kalnay is an attorney and an author. He has been an athlete, a
soldier, a professor, a programmer, an Ironman, and mountain climber. JT now
divides his time between being an attorney, being an author, and helping his wife
chase after seven nieces and nephews.

JT was born and raised in Belleville, Ontario, Canada. Growing up literally steps
from the Bay of Quinte, water, ice, fishing, swimming, boating, and drowning were
very early influences and appear frequently in his work.

Educated at the Royal Military College, the University of Ottawa, the University
of Dayton, and Case Western Reserve University, JT has spent countless hours
studying a wide range of subjects including math, English, computer science,
physics, and law. Many of his stories are set on college campuses. JT (along with MC
and KR) is one of the founding members of the Stone Frigate Military Academy
English Society.

JT is a certified rock climbing guide and can often be found atop crags in West
Virginia, California, Texas, New Mexico, Nevada, Kentucky, Mexico, and Italy. Rock
climbing appears frequently in his writing.

JT has witnessed firsthand many traumatic events including the World Trade
Center Bombing, the Long Island Railroad Shooting, a bear attack, a plane crash,
and numerous fatalities, in the mountains and elsewhere.

Disasters, loss, and confronting personal fear are common themes in his writing.

www.jtkalnay.com

296

http://www.jtkalnay.com/

