
2015

Stacks and Queues.

Dynamic Memory Allocation.

Lecture 5

2015

• Stacks and queues are dynamic sets such that the element
removed is pre-specified.

• In a stack, the element removed is the last element inserted. So
a stack implements the principle Last In First Out – LIFO.

• In a queue, the element removed is the first element inserted. So
a queue implements the principle First In First Out – FIFO.

• A double ended queue – dequeue is a list such that insertions
and removals can be explicitly made to either ends of the list.

• Stacks & queues are implemented using arrays or linked lists.

Stacks, queues and dequeues

2015

• Stacks are used in:

– Compilers of programming languages:

• For language parsing

• For code generation

– Language implementation:

• To implement procedure calls

– Algorithms:

• To implement recursive algorithms

• Graph search and traversal

– Hardware and virtual machines

• JVM is a stack machine

Applications of stacks

2015

• Queues are used in:

– Operating systems:

• To store messages exchanged by processes and threads

• To store input/output events

• For scheduling of processes

– Simulation:

• To manage simulation events

– Data communication:

• For buffering, for example buffers in network cards

– Algorithms

• Graph search and traversal

Applications of queues

2015

• The main operations with stacks are:

– STACK-PUSH(S,x) is the insertion operation for stacks.

– STACK-POP(S) is the removal operation for stacks.

– STACK-EMPTY(S) is an operation that checks if a

stack is empty or not.

• Whenever we are trying to pop an element from an

empty stack ⇒ stack underflow.

• Whenever we are trying to push an element onto a

full stack ⇒ stack overflow.

Stack Operations

2015

• A stack can be implemented using an array S[1..n]. In the
implementation there is a special field top[S] that is called the top of
the stack. It represents the index of the element that has been inserted
the most recently into the stack. Thus, at a certain moment in time the
stack S contains the following elements S[1], S[2], …, S[top[S]].

• If top[S] = 0 then the stack is empty. Of course, initially we have to
assure that top[S] is set to 0.

• Whenever we are trying to pop an element from a stack and top[S] = 0
⇒ stack underflow.

• Whenever we are trying to push an element onto a stack and top[S] =
n⇒ stack overflow.

• Clearly, an underflow has to be always reported as an error. For an
overflow we have two choices: either to report it as an error or to try
to work out the situation by increasing dynamically the size of the
array S. In what follows we ignore potential stack overflows.

Implementation of Stacks

2015

Algorithms for stacks

Note that all the stack operations take a constant time.

2015

• The main operations with queues are:

– QUEUE-PUSH(Q,x) is the insertion operation for
queues.

– QUEUE-POP(Q) is the removal operation for queues.

– QUEUE-EMPTY(Q) is an operation that checks if a
queue is empty or not.

• Whenever we are trying to pop an element from an
empty queue ⇒ queue underflow.

• Whenever we are trying to push an element onto a
full queue ⇒queue overflow.

Queue Operations

2015

• A queue of maximum n−1 elements can be implemented using a
circular array Q[1..n] (i.e. the index following n is 1). In the
implementation there are two special fields:

– front[Q], index of element in front of the queue (the oldest element in the queue)

– rear[Q], index of element at the rear of the queue where a new element will be
inserted (one position before the newest element).

• The elements of the queue are (starting with the oldest one, ending with
the newest one): Q[front[Q]], Q[front[Q]+1], …, Q[rear[Q]-1].

• The condition front[Q] = rear[Q] is used to signal that the queue is
empty. Initially we have to set front[Q] and rear[Q] such that this
condition holds.

• Whenever we are trying to pop an element from a queue with front[Q]
= rear[Q] ⇒ queue underflow.

• Whenever we are trying to push an element onto a queue and front[Q]
= rear[Q]+1 ⇒ queue overflow.

Implementation of Queues

2015

Algorithms for queues

Note that length[Q] is n. The
comparisons with n are needed
to implement the circular
behavior of Q.

Note that all the queue
operations take constant time.

2015

Implementation of stacks (I)

#ifndef STACK_H

#define STACK_H

#define STACK_SIZE 100

typedef struct stack {

int top;

int elements[STACK_SIZE];

} Stack;

void stackInit(Stack *s);

int stackEmpty(Stack *s);

void stackPush(Stack *s,

int x);

int stackPop(Stack *s);

int stackTop(Stack *s);

#endif

The implementation contains 2 modules:

1. The stack module (files stack.h and stack.c).

2. The main module (file main.c).

We have added two more operations:

1. stackInit() to initialize the top of the
stack.

2. stackTop() to return the value on top of
the stack.

The program takes command lines from the

standard input:

- u number to push the number onto

the stack

- o to pop a number from the stack

- p to print the contents of the stack

with the top shown to the left

- x to exit the program

Additionally, the program prints each

command before executing it.

2015

Implementation of stacks (II)
#include <stdio.h>
#include <stdlib.h>
#include "stack.h"
#define error(x)

fprintf(stderr,x);exit(1);

void stackInit(Stack *s) {
s -> top = -1;

}

int stackEmpty(Stack *s) {
return s->top == -1;

}

void stackPush(Stack *s,int x) {
if (s->top<STACK_SIZE-1) {
s->elements[++s->top] = x;

}
else {
error("Stack overflow\n");

}
}

int stackPop(Stack *s) {

if (s->top>=0) {

return s->elements[s->top--];

}

else {

error("Stack underflow\n")

}

}

int stackTop(Stack *s) {

if (s->top>=0) {

return s->elements[s->top];

}

else {

error("Stack is empty\n")

}

}

2015

Implementation of stacks (III)

#include <stdio.h>

#include <stdlib.h>

#include "stack.h"

void stackPrint(Stack *s) {

int i;

i = s->top;

while (i>=0) {

printf("%3d",

s->elements[i--]);

}

printf("\n");

}

main() {

Stack s;

int k;

char cmdLine[80];

stackInit(&s);

gets(cmdLine);

while (tolower(cmdLine[0])!='x') {

puts(cmdLine);

switch(tolower(cmdLine[0])) {

case 'u':

sscanf(cmdLine+1,"%d",&k);

stackPush(&s,k);

break;

case 'o':

k = stackPop(&s);

break;

case 'p':

stackPrint(&s);

break;

}

gets(cmdLine);

}

}

2015

A trace of the stack program
Input file:
u 12

u 45

p

o

u 14

p

u 7

p

o

o

p

u 9

p

u 5

u 10

p

o

o

o

o

p

Output file:
u 12

u 45

p

45 12

o

u 14

p

14 12

u 7

p

7 14 12

o

o

p

12

u 9

p

9 12

u 5

u 10

p

10 5 9 12

o

o

o

o

p

o

Stack underflow

2015

• Dynamic memory = memory allocated at run-time.

• Static memory = memory allocated at compile-time.

• Programming languages like C and Pascal provide libraries for managing
dynamic memory. This memory is allocated from a special area called
heap.

• The heap is managed by a special language library component that
implements functions like:
– new and dispose in Pascal

– malloc(), calloc() and free() in C.

• In languages that do not provide facilities for dynamic memory allocation
it is possible to simulate it using static memory. Also, even if the pointer
data type is not supported, it is possible to simulate it using integers.

• The idea is to define the heap as a static block of memory and define a set
of operations for managing objects allocated in this block. To simplify
things, we shall assume that all the objects have the same size (i.e. they are
homogenous).

Dynamic memory allocation (I)

2015

• We propose an implementation of dynamic memory allocation for fixed-
size objects that uses the following variables:
– The array storage for storing the objects;

– The array next for storing links of the available objects;

– An integer available that stores the index of the first available object. The available
objects are linked together using the links stored in the array next.

• Initially all the objects in array storage are available. Whenever a request
for allocating a new object is made, the object is taken from the available
list. Whenever an object is released, it is pushed onto the available list.
Thus, the available list behaves like a stack and object creation/deletion
takes constant time.

• For representing NIL we are using a value that is not a valid index in
storage (i.e. if storage has indices starting with 0 we can take NIL = -1, or
if it has indices starting with with 1 we cam take NIL = 0).

• If available = NIL then the allocation of a new object fails. This means
that all the objects of the storage array have already been allocated before.

Dynamic memory allocation (II)

2015

Algorithms for dynamic memory allocation

1. We assume that the arrays next
and storage have indices from
1 to n and that n =
size[storage]. NIL = -1

2. OBJECT-NEW and OBJECT-
DELETE can be implemented
such that they use pointers to
objects instead of integer
indices.

2015

In this example the objects are nodes of a doubly-linked list.
The links shown in the array storage follow the next field of a
node of this list.

In this example array subscripts start with 0 !

Example

- - 9 15 17 8 3 4 7 1

- - 1 7 0 5 4 3 2 -1

- - 6 -1 5 4 3 2 7 5

-1 9 - - - - - - - -

9 8 7 6 5 4 3 2 1 0

prev

key

next

next

head

available

storage

15, 9, 7, 4, 3, 8, 17, 1

2015

• We consider the implementation of dynamic memory allocation for the
nodes of a doubly-linked list.

• Requirement: the implementation must be done such that the
implementation of doubly-linked lists shown in the previous lecture will
need only minimal changes:
– The list module (files list.c and list.h) will not be changed at all;

– The main program will be changed only where the calls to dynamic memory
allocation functions were made.

• The allocator is implemented as a separated module oalloc (files oalloc.c
and oalloc.h). This module must know the type of the objects
(ListNode) so it will include the header list.h.

• The main program must initialize and then call the allocator. So it will
include the header oalloc.h.

• Conclusion: in this way the interaction between the original program and
the allocator is minimized.

• Note that because we don’t want to change the list module the allocator
must return pointers, not integer indices.

Implementation of dynamic memory allocation (I)

2015

Implementation of dynamic memory allocation (II)
#ifndef OALLOC_H

#define OALLOC_H

#include "list.h"

#define N_OBJECTS 100

#define NIL -1

ListNode storage[N_OBJECTS];

int next[N_OBJECTS];

int available;

void storageInit(void);

ListNode* objectNew(void);

void objectDelete(ListNode *);

#endif

#include <stdlib.h>
#include "oalloc.h"
void storageInit(void) {

int i;
for (i=0;i<N_OBJECTS-1;i++) {

next[i] = i+1;
}
next[N_OBJECTS-1] = NIL;
available = 0;

}
ListNode* objectNew(void) {

if (available == NIL) {
return NULL;

}
else {

int x = available;
available = next[x];
return &storage[x];

}
}
void objectDelete(ListNode *x) {

int y = x-storage;
next[y] = available;
available = y;

}

2015

Implementation of dynamic memory allocation (III)

gets(cmdLine);
while (tolower(cmdLine[0]) != 'x') {

switch(tolower(cmdLine[0])) {
case 'i':

sscanf(cmdLine+1,"%d",&k);
n = objectNew();
n->key = k;
listInsert(&l,n); break;

case 'r':
sscanf(cmdLine+1,"%d",&k);
n = listSearch(&l,k);
if (n != NULL) {

listRemove(&l,n);
objectDelete(n);

}
break;

case 'p':
printList(l); break;

}
gets(cmdLine);

}
}

#include <stdio.h>
#include <stdlib.h>
#include "list.h"
#include "oalloc.h"

void printList(List l) {
ListNode *n;
n = l.head;
while (n != NULL) {

printf("%3d",n->key);
n = n->next;

}
printf("\n");

}

main() {
List l;
int k;
char cmdLine[80];
ListNode *n = NULL;
storageInit();
l.head = NULL;

The lines that have been underlined show the points where the original main

program has been changed.

2015

1. We consider an arithmetic expression with operands,
operators * and + and parentheses ‘(‘ and ‘)’.
Operands can be:

– variables represented by single letters and

– numbers represented by single digits 0, …, 9.

The program yakes as input:

– A string representing a syntactically correct expression

– The values of variables. A value can be only a digit.

Design an algorithm and develop a C program that

reads an expression together with the values of the

variables and determines the value of the expression.

Homework

